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ABSTRACT. Optimal impact angle control guidance law and its variants for intercepting a ma-

neuvering target are introduced in this paper. The linear quadratic(LQ) optimal control theory

is reviewed first to setup framework of guidance law derivation, called the sweep method. As

an example, the inversely weighted time-to-go energy optimal control problem to obtain the

optimal impact angle control guidance law for a fixed target is solved via the sweep method.

Since this optimal guidance law is not applicable for a moving target due to the angle mismatch

at the impact instant, the law is modified to three different biased proportional navigation(PN)

laws: the flight path angle control law, the line-of-sight(LOS) angle control law, and the rela-

tive flight path angle control law. Effectiveness of the guidance laws are verified via numerical

simulations.

1. INTRODUCTION

Impact angle control in a guidance problem has drawn a lot of attentions due to its wide

applications in unmanned aerial vehicles(UAVs) and missiles. Tactics of missiles such as ap-

proaching the most vulnerable side of a ship or a tank and maximizing radar cross section(RCS)

of an air target can easily be achieved by impact angle control laws. Vertical attack of a surface-

to-surface missile from air to a ground target is very important to maximize the warhead effect

as well as to minimize miss distance due to navigation error inherently embedded in the verti-

cal channel of the inertial navigation system. The impact angle control laws make it possible

to easier path planning of unmanned aerial vehicles(UAVs) by freely designating the passing

angles of waypoints.

Kim and Grider[1] proposed an optimal guidance law to vertically guide a re-entry vehi-

cle to a designated ground point and this is the first attempt to control flight path angle of an

aerial vehicle. The rendezvous problem is a sort of impact angle control problem and Bryson

and Ho[2] showed it could be solved by the optimal control theory, where the velocity compo-

nent normal to the specified rendezvous course was to be nullified by the proposed guidance

law. In the previous works of this author in [3, 4], optimal guidance laws with impact an-

gle constraints have been derived based on the linear quadratic(LQ) optimal control theory.

Ohlmeyer[5] also proposed an optimal impact angle control law called the generalized vector
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explicit guidance(GENEX). Here, the same cost function as that of [4] is minimized and zero

effort miss(ZEM) and zero effort terminal velocity are considered as the terminal constraints.

As an application of the optimal impact angle control laws for UAVs, the real-time energy

optimal path planning method has been proposed by the author in [6].

LQ optimal control theory deals with the optimal control problem of minimizing a LQ cost

function with linear system and linear constraints. The sweep method[2], the solution approach

to Euler-Lagrange necessary conditions for LQ optimal control, provides a design framework

for optimal state feedback control which includes backward integration of differential Riccati

equations. Actually, the theory of LQ regulator design is an extended version of the sweep

method for infinite time horizon control problems. The sweep method is well posed for deriving

new guidance laws. In this paper, hence, the sweep method is systematically reviewed and the

optimal guidance law proposed in [4] is derived via the sweep method as an example.

One of the problems of impact angle control laws previously studied is that they cannot

be directly applied to intercept a maneuvering target. Most impact angle control laws include

the flight path angle and the line-of-sight(LOS) angle(or relative position of the missile to the

target) as the state variables. For a fixed target, the flight path angle and the LOS angle are

the same at the impact instant. However, if the target is moving or maneuvering, both angles

are not coincident with each other at the impact instant because the flight path angle is defined

without consideration of target’s motion while the LOS angle is defined relative to the target

position. To apply the impact angle control laws to intercept a maneuvering target, they should

be modified to be a biased proportional navigation(PN) which consists of the conventional PN

term and the impact angle control term. In this paper, three variants of optimal impact angle

control law is proposed in the sense of the flight path angle control, the LOS angle control, and

the relative flight path angle control against a maneuvering target.

This paper is organized as follows. In section 2, the sweep method based on the LQ optimal

control theory is reviewed. Optimal impact angle control guidance law studied in [4] is derived

again based on the sweep method and the variants are introduced in Section 3. Numerical

examples for understanding characteristics of the guidance laws are provided in Section 4.

Finally, the concluding remarks are in Section 5.

2. REVIEW OF LQ OPTIMAL CONTROL - THE SWEEP METHOD

In this section, the sweep method[7-9] to provide a framework of derivation of guidance

laws as the solution of LQ optimal problem is reviewed.

2.1. Nonlinear optimal control problem. Consider the problem of finding an optimal con-

trol, a continuously differentiable function u : [t0, tf ] → R, which minimizes the cost function

for a fixed tf

J = ϕ(x(tf ), tf ) +

∫ tf

t0

L(x, u, t)dt. (2.1)

subject to the differential equations

ẋ = f(x, u, t), x(t0) = x0 (2.2)
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and the terminal constraints

ψ(x(tf ), tf ) = 0. (2.3)

Here, x ∈ Rn and u ∈ Rr denote the state vector and the control vector, respectively. And, f
is the n real functions; ϕ and L are scalar functions; ψ is the p real functions where p < n− 1.

Each of functions has continuous partial derivatives in x and u.

2.2. Euler-Lagrange necessary conditions. Hamiltonian to augment the nonlinear system

equations to the integral cost with the Lagrange multipliers λ ∈ Rn to augment the system

constraint to the integral cost is defined by

H(x, u, λ, t) = L(x, u, t) + λT f(x, u, t). (2.4)

And the endpoint equation to augment the terminal constraints to the terminal cost with the

multipliers ν ∈ Rpis defined by

G = ϕ(x(t), t) + νTψ(x(t), t). (2.5)

If u∗ minimizes (2.1) subject to (2.2) and (2.3), u∗ should satisfy the control equation

∂H
∂u

(x∗, u∗, λ, t) = 0 (2.6)

where x∗ is the optimal state vector. The co-state equations to define the dynamics of the

Lagrange multiplier is

−λ̇T =
∂H
∂x

(x∗, u∗, λ, t), λT (tf ) =
∂ϕ

∂x
(x∗(tf ), tf ) + νT

∂ψ

∂x
(x∗(tf ), tf ). (2.7)

As (2.2) and (2.7) are introduced, these necessary conditions called the Euler-Lagrange equa-

tions are “weak” in the sense that there is no bound on control input and form a two-point

boundary value problem.

2.3. LQ optimal control problems. Now consider an LQ optimal control problem: For a

given tf , find u(t) which minimizes

J =
1

2
x(tf )

TSfx(tf ) +

∫ tf

t0

(
1

2
xTQx+ uTCx+

1

2
uTRu

)
dt (2.8)

subject to

ẋ = Ax+Bu, x(t0) = x0 (2.9)

with

Dx(tf ) = E (2.10)

where Sf ≥ 0, Q ≥ 0, C ≥ 0, and R > 0 are weighting matrices with proper dimensions.
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2.4. Euler-Lagrange equations. By the definition, Hamiltonian of the above optimal control

problem is given by

H =
1

2
xTQx+ uTCx+

1

2
uTQu+ λT (Ax+Bu) (2.11)

Let u∗ be the optimal control. Then, from Pontryagin’s minimum principle,

λ̇ = −∂H
∂x

T

= −ATλ−Qx− CTu∗, λ(tf ) = Sfx(tf ) +DT ν (2.12)

and

∂H
∂u

T

= 0 = Cx+Ru∗ +BTλ (2.13)

Substituting (2.11) into (2.13), we have

u∗ = −R−1Cx−R−1BTλ (2.14)

Also, substitute (2.11) into (2.12) and combine with (2.9) to obtain[
ẋ

λ̇

]
= H

[
x
λ

]
(2.15)

with

x(t0) = x0 and λ(tf ) = Sfx(tf ) +DT ν (2.16)

where

H =

[
A−BR−1C −BR−1BT

−Q+ CTR−1C −(A−BR−1C)T

]
. (2.17)

Note that H is not the Hamiltonian. There is a state transition matrix ΦH for H such that

Φ̇H(t, t0) = H(t)ΦH(t, t0), ΦH(t0, t0) = I (2.18)

Since ΦH(tf , t0) = ΦH(tf , t)ΦH(t, t0),

Φ̇H(tf , t0) = 0 = Φ̇H(tf , t)ΦH(t, t0) + ΦH(tf , t)Φ̇H(t, t0) (2.19)

Substituting (2.18) into (2.19) and rearranging, we have a backward differential equation

Φ̇H(tf , t) = −ΦH(tf , t)H(t), ΦH(tf , tf ) = I (2.20)

It is easy to show that ΦH has the symplectic property so that

ΦH(t, t0)

[
0 I
−I 0

]
ΦT
H(t, t0) =

[
0 I
−I 0

]
. (2.21)

Let ΦH be denoted by

ΦH(t, t0) �
[
φ11(t, t0) φ12(t, t0)
φ21(t, t0) φ22(t, t0)

]
. (2.22)
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Now we define

Φ̄H(t, t0) �
[
φ̄11(t, t0) φ̄12(t, t0)
φ̄21(t, t0) φ̄22(t, t0)

]
=

[
I 0

−Sf I

]
ΦH(t, t0)

=

[
φ11(t, t0) φ12(t, t0)

φ21(t, t0)− Sfφ11(t, t0) φ22(t, t0)− Sfφ12(t, t0)

] (2.23)

Since

Φ̄H(t, t0)

[
0 I
−I 0

]
Φ̄T
H(t, t0) =

[
I 0

−Sf I

] [
0 I
−I 0

] [
I −ST

f

0 I

]

=

[
0 I
−I ST

f − Sf

] , (2.24)

Φ̄H is also symplectic if Sf is symmetric. Thus,

φ̄11(t, t0)φ̄
T
12(t, t0) = φ̄12(t, t0)φ̄

T
11(t, t0)

φ̄21(t, t0)φ̄
T
22(t, t0) = φ̄22(t, t0)φ̄

T
21(t, t0) (2.25)

φ̄11(t, t0)φ̄
T
22(t, t0)− φ̄12(t, t0)φ̄

T
21(t, t0) = I

Moreover,

˙̄ΦH(tf , t) =

[
I 0

−Sf I

]
Φ̇H(tf , t) = −

[
I 0

−Sf I

]
ΦH(tf , t)H(t)

= −Φ̄H(tf , t)H(t)

(2.26)

with

Φ̄H(tf , tf ) =

[
I 0

−Sf I

]
ΦH(tf , tf ) =

[
I 0

−Sf I

]
(2.27)

2.5. Determination of ν , λ(t0), and x(tf ). The solution of (2.15) is given by[
x(t)
λ(t)

]
= ΦH(t, t0)

[
x(t0)
λ(t0)

]
=

[
φ11(t, t0)x0 + φ12(t, t0)λ(t0)
φ21(t, t0)x0 + φ22(t, t0)λ(t0)

]
Then

x(tf ) = φ11(tf , t0)x0 + φ12(tf , t0)λ(t0), (2.28)

λ(tf ) = φ21(tf , t0)x0 + φ22(tf , t0)λ(t0). (2.29)

For the time being, we use φij instead of φij(tf , t0) for brevity. Using (2.16) and (2.28), we

have

λ(tf ) = Sfx(tf ) +DT ν

= Sf [φ11x0 + φ12λ(t0)] +DT ν (2.30)
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Compare (2.30) with (2.29) to obtain

(φ22 − Sfφ12)λ(t0) = −(φ21 − Sfφ11)x0 +DT ν (2.31)

or

φ̄22λ(t0) = −φ̄21x0 +DT ν. (2.32)

Assume that φ̄22 is invertible. Then

λ(t0) = −φ̄−1
22 φ̄21x0 + φ̄−1

22 D
T ν (2.33)

Substituting (2.33) into (2.28) and considering φ11 = φ̄11, φ12 = φ̄12, we have

x(tf ) = (φ̄11 − φ̄12φ̄
−1
22 φ̄21)x0 + φ̄12φ̄

−1
22 D

T ν

= φ̄−T
22 x0 + φ̄12φ̄

−1
22 D

T ν (2.34)

where the second equality in (2.34) is obtained from a symplectic property given by

φ̄−T
22 = φ̄11 − φ̄12φ̄

−1
22 φ̄21. (2.35)

Replacing x(tf ) in (2.10) by (2.34) gives

E = Dφ̄12φ̄
−1
22 D

T ν +Dφ̄−T
22 x0. (2.36)

Eqs. (2.33) and (2.36) can be written as[
λ(t0)
E

]
=

[ −φ̄−1
22 (tf , t0)φ̄21(tf , t0) φ̄−1

22 (tf , t0)D
T

[φ̄−1
22 (tf , t0)D

T ]T Dφ̄12(tf , t0)φ̄
−1
22 (tf , t0)D

T

] [
x0
ν

]
. (2.37)

In order to obtain λ(t0) and ν, we have to know all the terms of the state transitions matrix.

2.6. Determination of differential equations. Now define

S(tf , t) = −φ̄−1
22 (tf , t)φ̄21(tf , t)

F (tf , t) = φ̄−1
22 (tf , t)D

T (2.38)

G(tf , t) = Dφ̄12(tf , t)φ̄
−1
22 (tf , t)D

T .

Expand (2.26) with (2.27) to obtain

˙̄φ11(tf , t) = −φ̄11(tf , t)(A−BR−1C)− φ̄12(tf , t)(−Q+ CTR−1C), φ̄11 (tf , tf ) = I

˙̄φ12(tf , t) = φ̄11(tf , t)BR
−1BT + φ̄12(tf , t)(A−BR−1C)T , φ̄12 (tf , tf ) = 0

˙̄φ21(tf , t) = −φ̄21(tf , t)(A−BR−1C)− φ̄22(tf , t)(−Q+ CTR−1C), φ̄21 (tf , tf ) = −Sf
˙̄φ22(tf , t) = φ̄21(tf , t)BR

−1BT + φ̄22(tf , t)(A−BR−1C)T , φ̄22 (tf , tf ) = I. (2.39)

Differentiating φ̄22(tf , t)φ̄
−1
22 (tf , t) = I and using ˙̄φ22(tf , t) in (2.39), we have

˙̄φ−1
22 (tf , t) = − [(A−BR−1C)T − S(tf , t)BR

−1BT
]
φ̄−1
22 (tf , t) (2.40)
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and

d

dt

[
φ̄12(tf , t)φ̄

−1
22 (tf , t)

]
= ˙̄φ12φ̄

−1
22 + φ̄12

˙̄φ−1
22

=
[
φ̄11BR

−1BT + φ̄12(A−BR−1C)T
]
φ̄−1
22

− φ̄12
[
(A−BR−1C)T − S(tf , t)BR

−1BT
]
φ̄−1
22 (2.41)

=
[
φ̄11 − φ̄12φ̄

−1
22 φ̄21

]
BR−1BT φ̄−1

22 = φ̄−T
22 BR

−1BT φ̄−1
22

By differentiating (2.38) to have

Ṡ(tf , t) = − ˙̄φ−1
22 φ̄21 − φ̄−1

22
˙̄φ21

=
[
S(tf , t)BR

−1BT − (A−BR−1C)T
]
S(tf , t)

− S(tf , t)(A−BR−1C) + (CTR−1C −Q)

Ḟ (tf , t) =
˙̄φ−1
22 D

T = − [(A−BR−1C)T − S(tf , t)BR
−1BT

]
F (tf , t) (2.42)

Ġ(tf , t) = D
d

dt

[
φ̄12(tf , t)φ̄

−1
22 (tf , t)

]
DT = Dφ̄−T

22 BR
−1BT φ̄−1

22 D
T

= F T (tf , t)BR
−1BTF (tf , t).

The boundary conditions of (2.42) are given by

S(tf , tf ) = −φ̄−1
22 (tf , tf )φ̄21(tf , tf ) = Sf

F (tf , tf ) = φ̄−1
22 (tf , tf )D

T = DT (2.43)

G(tf , tf ) = Dφ̄12(tf , tf )φ̄
−1
22 (tf , tf )D

T = 0

2.7. Determination of control equation. Now (2.37) can be rewritten as[
λ(t0)
E

]
=

[
S(tf , t0) F (tf , t0)
F T (tf , t0) G(tf , t0)

] [
x0
ν

]
(2.44)

Assuming that G is invertible,

ν = G−1(tf , t0)[E − F T (tf , t0)x0] (2.45)

Thus,

λ(t0) = S(tf , t0)x0 + F (tf , t0)ν

= S̄(tf , t0)x0 + F (tf , t0)G
−1(tf , t0)E (2.46)

where

S̄(tf , t0) = S(tf , t0)− F (tf , t0)G
−1(tf , t0)F

T (tf , t0) (2.47)

Since (2.46) is valid for any t0 < tf for which G(tf , t0) is invertible, we can write

λ(t) = S̄(tf , t)x(t) + F (tf , t)G
−1(tf , t)E (2.48)

where

S̄(tf , t) = S(tf , t)− F (tf , t)G
−1(tf , t)F

T (tf , t) (2.49)
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Substituting (2.48) into (2.14), we have

u∗ = −R−1Cx−R−1BT
[
S̄x+ FG−1E

]
= −R−1(C +BT S̄)x−R−1BTFG−1E (2.50)

The above result can be summarized as follows.

2.8. Summary of the sweep method. Consider an LQ optimal control problem: Find u(t)
which minimizes (2.8) subject to (2.9) with the terminal constraints of (2.10). Then, the optimal

control u∗ is given by

u∗ = −R−1(C +BT S̄)x−R−1BTFG−1E (2.51)

where

S̄ = S − FG−1F T

Ṡ = −(A−BR−1C)TS − S(A−BR−1C)− (Q− CTR−1C)

+ SBR−1BTS, S(tf , tf ) = Sf (2.52)

Ḟ = −[(A−BR−1C)T − SBR−1BT ]F, F (tf , tf ) = DT

Ġ = F TBR−1BTF, G(tf , tf ) = 0

2.9. The simplified sweep method - Terminal constraint only. Most widely used LQ opti-

mal control formulation in guidance problems involves the minimization of control effort with

terminal constraints. In this case, the generalized optimal control problem is greatly simplified:

Find u(t) which minimizes

J =
1

2

∫ tf

t0

uTRudt (2.53)

subject to ẋ = Ax+Bu, x(t0) = x0 with Dx(tf ) = E.

Then, the solution to this LQ optimal control problem is given by

u∗ = R−1BTFG−1(F Tx− E) (2.54)

where

Ḟ = −ATF, F (tf , tf ) = DT (2.55)

Ġ = F TBR−1BTF, G(tf , tf ) = 0 (2.56)

3. IMPACT ANGLE CONTROL LAW AND ITS VARIANTS

In this section, the optimal impact angle control guidance law in [4] is briefly introduced to

show how to derive a guidance law via the sweep method explained in the previous section.

Consider the planar homing engagement geometry as shown in Fig. 1 where M and T rep-

resent the missile and the target, respectively. The target is assumed to be fixed. The relative

distance and the LOS angle of the target with respect to the missile are represented by R and

σ, respectively. The speed and flight path angle of the missile are respectively denoted by VM
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and γM . The acceleration command u is normal to the missile velocity. Let γf be the desired

impact angle of the missile to the target. Under the assumption that VM is constant, we have

γ̇M =
u

VM
. (3.1)

FIGURE 1. The planar homing engagement geometry

Note that z represents the lateral distance from the reference line. Hence,

ż = VM sin γM . (3.2)

Assuming that γM is small during the flight, we obtain the linearized equations of motion as

follows

ż ≈ VMγM (3.3)

VM γ̇M = aM . (3.4)

Consider a following optimal control problem: Find the optimal control u that minimizes the

performance cost

J =
1

2

∫ tf

0

u2(t)

tmgo
dt, m ≥ 0, tgo = tf − t, (3.5)

subject to the kinematics constraints given by (3.3) and (3.4). And the terminal constraints are

z (tf ) = 0 (3.6)

γM (tf ) = γf . (3.7)

Note that tf in (3.5) denotes the final time when the missile reaches to the target. Now we

introduce the following state vector to solve the above LQ optimal control problem

x =

[
z
v

]
�
[

z
VMγM

]
. (3.8)
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Then, the matrices and weightings in (2.54)-(2.56) are given by

ẋ = Ax+Bu where A =

[
0 1
0 0

]
, B =

[
0
1

]
.

Dx(tf ) = E where D =

[
1 0
0 1

]
, E =

[
0
vf

]
�
[

0
VMγf

]
, (3.9)

and

R =
1

(tf − t)m
, m ≥ 0. (3.10)

From D in (2.55), we know that the size of F is 2×2. Define F � [fij ] , i, j = 1, 2, then

Ḟ = −ATF, F (tf ) = DT ⇒

⎧⎪⎪⎨
⎪⎪⎩

ḟ11 = 0, f11 = 1 (f11(tf ) = 1)

ḟ12 = 0, f12 = 0 (f12(tf ) = 0)

ḟ21 = −f11 = −1, f21 = tf − t (f21(tf ) = 0)

ḟ22 = −f12 = 0, f22 = 1 (f22(tf ) = 1)

⇒ F =

[
1 0
tgo 1

]
, where tgo � tf − t

.

(3.11)

The right hand side of (2.56) is calculated as

F TBR−1BTF =

[
1 tgo
0 1

] [
0
1

]
tmgo

[
0 1

] [ 1 0
tgo 1

]
=

[
tgo
1

]
tmgo

[
tgo 1

]
=

[
tm+2
go tm+1

go

tm+1
go tmgo

]
(3.12)

Define G � [gij ], i, j = 1, 2, and solve (2.56) to obtain

G =

[ − 1
m+3 t

m+3
go − 1

m+2 t
m+2
go

− 1
m+2 t

m+2
go − 1

m+1 t
m+1
go

]
(3.13)

or

G−1 = −(m+ 2)

tm+3
go

[
(m+ 3)(m+ 2) −(m+ 3)(m+ 1)tgo
−(m+ 3)(m+ 1)tgo (m+ 2)(m+ 1)t2go

]
(3.14)
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Finally, from (2.54) the optimal guidance law is derive as

u∗ = R−1BTFG−1
[
F Tx− E

]
= −(m+ 2)

t3go

[
tgo 1

] [ (m+ 3)(m+ 2) −(m+ 3)(m+ 1)tgo
−(m+ 3)(m+ 1)tgo (m+ 2)(m+ 1)t2go

]

×
{[

1 tgo
0 1

] [
z
v

]
−
[
0
vf

]}
(3.15)

= −(m+ 2)

t3go

[
(m+ 3)tgo −(m+ 1)t2go

] [ z + tgov
v − vf

]

= − 1

t2go
[(m+ 2)(m+ 3)z + 2(m+ 2)tgov + (m+ 1)(m+ 2)tgovf ]

or

u∗ = −VM
tgo

[
(m+ 2)(m+ 3)

z

tgoVM
+ 2(m+ 2)γM + (m+ 1)(m+ 2)γf

]
(3.16)

The time-to-go is simply calculated by range over range rate, i.e., tgo = R/Ṙ.

The optimal impact angle control law given in (3.16) is derived under the approximations of

small flight path angle and small LOS angle. The first term in the bracket can be easily changed

to the LOS angle and by doing so the effect of the small angle approximations are reduced so

that the capture region of the law can be greatly expanded. The performance of the guidance

law is varied according to which of the reference line to define the angles is selected and the

detailed topics are found in [10].

From the geometry,

σ = − sin
z

R
= − z

R
≈ − z

VM tgo
(3.17)

or

z = −VM tgoσ. (3.18)

Substitute (3.18) into (3.15) to obtain the angular form of the optimal impact angle control

law[4]

u∗(t) =
VM
tgo

(Nσσ −NγγM −Nfγf ) (3.19)

where

Nσ = (m+ 2)(m+ 3)

Nγ = 2(m+ 2) (3.20)

Nf = (m+ 1)(m+ 2).

The gain sets according to m are shown in Table 1. Special concern for m = 0 is required,

because it provides the pure energy optimality of the guidance law. For m > 0, the weighting

in (3.5) is growing to infinity as tgo approaches zero. To have a finite cost, the control should

be zero as tgo approaches zero.
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TABLE 1. Examples of the gain set according to m

m Nσ Nγ Nf

0 6 4 2

1 12 6 6

2 20 8 12

3.1. Flight path angle control against a maneuvering target. The optimal impact angle

control law given in (3.19) is simple enough but it requires the measurements of the LOS

angle as well as the flight path angle. The flight path angle can be typically obtained by the

INS(inertial navigation system) measurement while there are no sensor systems to directly

provide the LOS angle. If the target’s location is known, the LOS angle can be geometrically

calculated by combining with the missile’s location. If the target acquisition sensors such as

RF(radio frequency) or IR(infra-red) seekers, we requires a state estimator to obtain the LOS

angle.

Another important weakness in application of the law given in (3.19) is that it cannot inter-

cept a maneuvering target even for a constant speed without maneuver. For a fixed target, the

LOS angle and the flight path angle are always same as the desired impact angle at the impact

instant. If the target is moving or maneuvering, however, σ and γM are not same each other

at the impact, because σ is a state variable of the missile relative to the target so that it can

vary according to the target’s velocity vector, while γM is a state variable only for the missile

regardless of target’s motion. It means that angle mismatch will occur at the impact instant and

the guidance command eventually blows up if (3.19) is applied to a maneuvering target.

To solve this problem we change the form of the optimal impact angle control law. From

(3.17) and (3.18), the LOS rate becomes.

σ̇ = − żVM tgo + zVM
V 2
M t

2
go

= −VMγM tgo + z

VM t2go
= −γM − σ

tgo
(3.21)

or

σ = γM + tgoσ̇. (3.22)

Substitute (3.22) into (3.19) to obtain

u∗(t) = NσVM σ̇ +
NfVM
tgo

(γM − γf ). (3.23)

As introducing the LOS rate to the guidance law instead of the LOS angle, angle mismatch

disappears so that it is possible to intercept the maneuvering target. Note that the above optimal

impact angle control law is a biased PN where the first term in the right hand side of (3.23) is

the conventional PN to intercept a target and the second term is to satisfy the desired impact

angle.

3.2. LOS angle control against a maneuvering target. Sometimes we need to intercept the

target with a desired LOS, for example, to maintaining the target within a field of view(FOV)
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of the seeker of the missile. It is recommended that the missile is guided to the target with a

small LOS angle. The flight path angle control is not adequate for this purpose because the law

given in (3.23) intercepts the target without consideration of target maneuver. From (3.22),

γM = σ − tgoσ̇. (3.24)

Substituting (3.24) into (3.19), we have

u∗(t) = NγVM σ̇ +
NfVM
tgo

(σ − γf ) (3.25)

For the physical matching of the angle control term, the LOS angle control guidance law can

be rewritten

u∗(t) = NγVM σ̇ +
NfVM
tgo

(σ − σf ) (3.26)

Note that the guidance gain for the PN term in (3.26) is given by Nγ but different from Nσ of

(3.23). Referring to Table 1, small gain is required for the LOS angle control when it compared

to the flight path angle control law given in (3.23). Also, as illustrated in Fig. 2 we note that

γM (tf ) �= σ(tf ) = 0 if target maneuvering is introduced.

FIGURE 2. Difference between flight path angle and LOS angle at the impact

instant for a maneuvering target

3.3. Relative flight angle control against a maneuvering target. In some applications like

the interception of a ballistic target, maintaining the specified impact angle relative to the tar-

get’s flight direction is important to magnify the radar cross section(RCS) and to enhance kill

probability by hitting the sweet spot. If Δγ denotes the relative flight path impact angles of the

missile to the target’s velocity, the desired terminal flight path impact angle can be given by

γf = γT +Δγ (3.27)

The desired terminal flight path impact angle given in (3.27) is applied to (3.23) or

u∗(t) = NσVM σ̇ +
NfVM
tgo

(γM − γT −Δγ). (3.28)
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In (3.28), the target flight path angle at impact instant γT should be predicted but it is not

possible in real application because future target maneuver is not determined. Hence, we as-

sume that the current target flight path angle is maintained until the impact instant.

FIGURE 3. Definition of the relative flight path impact angle
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4. NUMERICAL EXAMPLES

In this section, the performance of the proposed guidance laws for intercepting a maneuver-

ing target is verified via numerical simulations in the planar engagement scenarios. The speeds

of the missile and the target are 250m/s and 100m/s, respectively, and remain constant during

the engagement. The target laterally maneuvers with 1g. The guidance gains are set by m = 0
in Table 1 so that the guidance laws have pure energy optimality.

Figure 4 shows the simulation results under the application of the flight path angle control

law given in (3.23) with various flight path impact angles. As shown in Fig. 4(c), all the flight

path angle constraints are satisfied with slight impact angle errors due to the target maneuver.

These errors cause that the guidance commands blow up as shown in Fig. 4(b). For γf = −60o,

the missile detours far away compared to other impact angle cases.

FIGURE 4. Simulation results for the flight path angle control law

From Fig. 5, we observe that the simulation results for the LOS angle control law in (3.26)for

various LOS impact angles. As shown in Fig. 5(d), the LOS impact angle constraints are

satisfied with no errors and command divergence is not observed from Fig. 5(b). The variation

range of flight path angle at the impact instant is from -40 degrees to 45 degrees as shown in
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Fig. 5(c). It means that the LOS angle control in this scenario is not severe as much as the

previous case for flight path angle control.

FIGURE 5. Simulation results for the LOS angle control law

In Fig. 6, the comparison of flight path angle control of γf = 0o and LOS angle control of

σf = 0o where the missile always intercepts the target with the same direction regardless of

the target motion if the flight path angle control is applied. Under the application of LOS angle

control, the flight path angles at the impact instant are different each other even though impact

LOS angles are the same as already explained in Fig. 2.

We can see in Fig. 7 the simulation results for the relative flight path angle control for

various impact angles given in (3.28). We observe from Figs. 7(a) and (d) that the guidance

purpose to intercept target with the relative flight path impact angle is satisfied. Tendency of

divergence in guidance command as shown in Fig. 7(b) is caused from the fact that there are

slight errors in impact angles.
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FIGURE 6. Comparison of the flight path angle and LOS angle control laws

FIGURE 7. Simulation results for the relative flight path angle control law
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Each guidance law has a limited capture condition even if there’s no error sources such as

response lag and command limit. It is thought that such a limited capture condition comes from

the inadequate time-to-go calculation method. In this paper, the time-to-go is simply calculated

by range over range rate since the target maneuver is introduced. It means that this method does

not reflect the curved nature of flight path so that real time-to-go may be little bit different from

the calculated one.

5. CONCLUSION

In this paper, the sweep method based on the LQ optimal control theory as a framework

to derive guidance laws is reviewed in detail. The three variants of the optimal impact angle

control guidance law to intercept a maneuvering target are newly introduced. The flight path

angle control law is capable of intercepting a mobile target on the ground with a given flight

path angle, typically vertical angle to maximize the warhead effect, regardless of target motion.

The LOS rate and target range for time-to-go calculation are the only required for implemen-

tation of this law. The LOS angle control law is useful for maintaining the target in the FOV

of the seeker of the missile since it can deliver a missile to an aerial target with a desired LOS

angle at the impact instant. The LOS rate, LOS angle, and target range should be given as

measurements for application of this law. The relative flight path angle control law has a lot of

applications especially in anti-ballistic missiles, however, it requires target’s flight path angle

as well as the LOS rate. Not detail discussed in this paper, each of the proposed guidance laws

to intercept a maneuvering target has its own limitation on capture condition which depends on

the time-to-go calculation method. How to expand the capture region is remained as the further

study.
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