• Title/Summary/Keyword: q-difference Riccati equation

Search Result 3, Processing Time 0.015 seconds

PROPERTIES ON q-DIFFERENCE RICCATI EQUATION

  • Huang, Zhi-Bo;Zhang, Ran-Ran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1755-1771
    • /
    • 2018
  • In this paper, we investigate a certain type of q-difference Riccati equation in the complex plane. We prove that q-difference Riccati equation possesses a one parameter family of meromorphic solutions if it has three distinct meromorphic solutions. Furthermore, we find that all meromorphic solutions of q-difference Riccati equation and corresponding second order linear q-difference equation can be expressed by q-gamma function if this q-difference Riccati equation admits two distinct rational solutions and $q{\in}{\mathbb{C}}$ such that 0 < ${\mid}q{\mid}$ < 1. The growth and value distribution of differences of meromorphic solutions of q-difference Riccati equation are also treated.

Oscillatory Behavior of Linear Neutral Delay Dynamic Equations on Time Scales

  • Saker, Samir H.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.175-190
    • /
    • 2007
  • By employing the Riccati transformation technique some new oscillation criteria for the second-order neutral delay dynamic equation $$(y(t)+r(t)y({\tau}(t)))^{{\Delta}{\Delta}}+p(t)y(\delta(t))=0$$, on a time scale $\mathbb{T}$ are established. Our results as a special case when $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=\mathbb{N}$ improve some well known oscillation criteria for second order neutral delay differential and difference equations, and when $\mathbb{T}=q^{\mathbb{N}}$, i.e., for second-order $q$-neutral difference equations our results are essentially new and can be applied on different types of time scales. Some examples are considered to illustrate the main results.

  • PDF

ON THE OSCILLATION OF SECOND-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS ON TIME SCALES

  • Zhang, Quanxin;Sogn, Xia;Gao, Li
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.219-234
    • /
    • 2012
  • By using the generalized Riccati transformation and the inequality technique, we establish some new oscillation criterion for the second-order nonlinear delay dynamic equations $$(a(t)(x^{\Delta}(t))^{\gamma})^{\Delta}+q(t)f(x({\tau}(t)))=0$$ on a time scale $\mathbb{T}$, here ${\gamma}{\geq}1$ is the ratio of two positive odd integers with $a$ and $q$ real-valued positive right-dense continuous functions defined on $\mathbb{T}$. Our results not only extend and improve some known results, but also unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation.