• Title/Summary/Keyword: q-PCR

Search Result 867, Processing Time 0.031 seconds

Evaluation of Galactomannan Enzyme Immunoassay and Quantitative Real-Time PCR for the Diagnosis of Invasive Pulmonary Aspergillosis in a Rat Model

  • Lin, Jian-Cong;Xing, Yan-Li;Xu, Wen-Ming;Li, Ming;Bo, Pang;Niu, Yuan-Yuan;Zhang, Chang-Ran
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1044-1050
    • /
    • 2014
  • Since there is no consensus about the most reliable assays to detect invasive aspergillosis from samples obtained by minimally invasive or noninvasive methods, we compared the efficacy of an enzyme-linked immunosorbent assay (ELISA) for galactomannan (GM) detection and quantitative real-time PCR assay (qRT-PCR) for the diagnosis of invasive pulmonary aspergillosis. Neutropenic, male Sprague-Dawley rats (specific pathogen free; 8 weeks old; weight, $200{\pm}20g$) were immunosuppressed with cyclophosphamide and infected with Aspergillus fumigatus intratracheally. Tissue and whole blood samples were harvested on days 1, 3, 5, and 7 post-infection and examined with GM ELISA and qRT-PCR. The A. fumigatus DNA detection sequence was detected in the following number of samples from 12 immunosuppressed, infected rats examined on the scheduled days: day 1 (0/12), day 3 (0/12), day 5 (6/12), and day 7 (8/12) post-infection. The sensitivity and specificity of the qRT-PCR assay was 29.2% and 100%, respectively. Receiver operating characteristic curve (ROC) analysis indicated a Ct (cycle threshold) cut-off value of 15.35, and the area under the curve (AUC) was 0.627. The GM assay detected antigen in sera obtained on day 1 (5/12), day 3 (9/12), day 5 (12/12), and day 7 (12/12) post-infection, and thus had a sensitivity of 79.2% and a specificity of 100%. The ROC of the GM assay indicated that the optimal Ct cut-off value was 1.40 (AUC, 0.919). The GM assay was more sensitive than the qRT-PCR assay in diagnosing invasive pulmonary aspergillosis in rats.

Identification of Candidate Transcripts Related to Drought Stress using Secondary Traits and qRT-PCR in Tropical Maize (Zea mays L.)

  • Kim, Hyo Chul;Song, Kitae;Moon, Jun-Cheol;Kim, Jae Yoon;Kim, Kyung-Hee;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.432-440
    • /
    • 2019
  • Global climate change exerts adverse effects on maize production. Among abiotic stresses, drought stress during the tasseling stage (VT) can increase anthesis-silking intervals (ASI) and decrease yield. We performed an evaluation of ASI and yield using a drought-sensitive line (Ki3) and a drought-tolerant line (Ki11) to analyze the correlation with ASI and yield. Moreover, the de novo data of Ki11 were analyzed to find putative novel transcripts related todrought stress in tropical maize. A total of 182 transcripts, with a log2 ratio >1.5, were found by comparing drought conditions to a control. The top 40 transcripts of high expression levels in the de novo analysis were selected and analyzed with PCR. Of the 40 transcripts, six novel transcripts were detected by quantitative real-time PCR (qRT-PCR) using seedling and VT stage samples. Five transcripts (transcripts_1, 12, 34, 35, and 40) were up-regulated in the Ki11 shoot at seedling stage, and transcripts_1, 12, and 40 were up-regulated at the re-watering stage after 12 h of drought stress. The transcripts_32 and 34 were up-regulated at the VT stage. Hence, transcript_34 possibly plays a significant role in drought tolerance during the seedling and VT stages. The transcript_32 was identified as chloramphenicol acetyltransferase (CAT) by Pfam domain analysis. The function of the other transcripts remained unknown. Further characterization of these novel transcripts in genetic regulation will be of great value for the improvement of maize production.

Detection of foot-and-mouth disease virus (FMDV) and avian influenza virus (AIV) from animal carcass disposal sites using real-time RT-PCR

  • Miguel, Michelle;Kim, Seon-Ho;Lee, Sang-Suk;Cho, Yong-Il
    • Korean Journal of Veterinary Service
    • /
    • v.43 no.2
    • /
    • pp.107-112
    • /
    • 2020
  • Foot-and-mouth disease (FMD) and avian influenza (AI) are highly pathogenic viral disease which affects the livestock industry worldwide. Outbreak of these viruses causes great impact in the livestock industry; thus, disease infected animals were immediately disposed. Burial is the commonly used disposal method for deceased animals. However, there is potential for secondary environmental contamination, as well as the risk that infectious agents persisting in the environment due to the limited environmental controls in livestock burial sites during the decomposition of the carcasses. Therefore, this study aimed to investigate the detection of FMD and AI viruses from animal carcass disposal sites using real-time reverse transcription PCR. Soil samples of more than three years post-burial from livestock carcass disposal sites were collected and processed RNA isolation using a commercial extraction kit. The isolated RNA of the samples was used for the detection of FMDV and AIV using qRT-PCR. Based on the qPCR assay result, no viral particle was detected in the soil samples collected from the animal disposal sites. This indicates that 3 years of burial and their carcass disposal method is efficient for the control or at least reduction of spread infections in the surrounding environment.

DLC-1 Expression Levels in Breast Cancer Assessed by qRT-PCR are Negatively Associated with Malignancy

  • Guan, Cheng-Nong;Zhang, Pei-Wen;Lou, Hai-Qing;Liao, Xiang-Hui;Chen, Bao-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1231-1233
    • /
    • 2012
  • Objective: The aim of this study was to explore the expression of DLC-l in breast carcinoma and any association with tumor metastasis. Methods: 51 surgical specimens of human breast carcinoma, divided into high invasive and low invasive groups according to their clinicopathological features, 30 cases of adjacent normal tissue and 28 benign breast lesions were examined by qRT-PCR for expression of DLC-1. Results: Expression level of DLC-1 in adjacent normal tissue and benign breast lesion specimens was higher than that in breast carcinoma (P<0.0001); the values in the high invasive group with synchronous metastases were also lower than in the low invasive group (P=0.0275). The correlation between DLC-1 expression level and tumor progression and metastasis of breast cancer was negative. Conclusion: As an anti-oncogene, DLC-1 could play an important part in breast carcinoma occurrence, progression, invasiveness and metastasis. Detecting the changes of the expression of DLC-1 in the breast carcinoma may contribute to earlier auxiliary diagnosis of invasiveness, metastasis and recrudescence.

A Novel Marker for the Species-Specific Detection and Quantitation of Shigella sonnei by Targeting a Methylase Gene

  • Cho, Min Seok;Ahn, Tae-Young;Joh, Kiseong;Kwon, Oh-Sang;Jheong, Won-Hwa;Park, Dong Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1113-1117
    • /
    • 2012
  • Shigella sonnei is a causal agent of fever, nausea, stomach cramps, vomiting, and diarrheal disease. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the specific detection of S. sonnei using a primer pair based on the methylase gene for the amplification of a 325 bp DNA fragment. The qPCR primer set for the accurate diagnosis of Shigella sonnei was developed from publically available genome sequences. This quantitative PCR-based method will potentially simplify and facilitate the diagnosis of this pathogen and guide disease management.

Quantitative Real-Time PCR Assay for Detection of Paenibacillus polymyxa Using Membrane-Fusion Protein-Based Primers

  • Cho, Min Seok;Park, Dong Suk;Lee, Jung Won;Chi, Hee Youn;Sohn, Soo-In;Jeon, Bong-Kyun;Ma, Jong-Beom
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1575-1579
    • /
    • 2012
  • Paenibacillus polymyxa is known to be a plant-growth-promoting rhizobacterium. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the specific detection and quantitation of P. polymyxa using a primer pair based on the sequence of a membrane-fusion protein for the amplification of a 268 bp DNA fragment. This study reports that the qPCR-based method is applicable for the rapid and sensitive detection of P. polymyxa and can be used as an alternative method for agricultural soil monitoring.

Identification of Genomic Aberrations by Array Comparative Genomic Hybridization in Patients with Aortic Dissections

  • Suh, Jong-Hui;Yoon, Jeong-Seob;Kwon, Jong-Bum;Kim, Hwan-Wook;Wang, Young-Pil
    • Journal of Chest Surgery
    • /
    • v.44 no.2
    • /
    • pp.123-130
    • /
    • 2011
  • Background: The aim of the present study was to identify chromosomal loci that contribute to the pathogenesis of aortic dissection (AD) in a Korean population using array comparative genomic hybridization (CGH) and to confirm the results using real-time polymerase chain reaction (PCR). Materials and Methods: Eighteen patients with ADs were enrolled in this study. Genomic DNA was extracted from individual blood samples, and array CGH analyses were performed. Four corresponding genes with obvious genomic changes were analyzed using real-time PCR in order to assess the level of genomic imbalance identified by array CGH. Results: Genomic gains were most frequently detected at 8q24.3 (56%), followed by regions 7q35, 11q12.2, and 15q25.2 (50%). Genomic losses were most frequently observed at 4q35.2 (56%). Real-time PCR confirmed the results of the array CGH studies of the COL6A2, DGCR14, PCSK6, and SDHA genes. Conclusion: This is the first study to identify candidate regions by array CGH in patients with ADs. The identification of genes that may predispose an individual to AD may lead to a better understanding of the mechanism of AD formation. Further multicenter studies comparing cohorts of patients of different ethnicities are warranted.

Effects of Lipopolysaccride-induced Stressor on the Expression of Stress-related Genes in Two Breeds of Chickens (Lipopolysaccride 감염처리가 닭의 품종간 스트레스연관 유전자 발현에 미치는 영향)

  • Jang, In Surk;Sohn, Sea Hwan;Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The objective of the present study was to determine the expression of genes associated with lipopolysaccharide (LPS)-induced stressor in two breeds of chickens: the Korean native chicken (KNC) and the White Leghorn chicken (WLH). Forty chickens per breed, aged 40 weeks, were randomly allotted to the control (CON, administered the saline vehicle) and LPS-injected stress groups. Samples were collected at 0 and 48 h post-LPS injection, and total RNA was extracted from the chicken livers for RNA microarray and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. In response to LPS, 1,044 and 1,193 genes were upregulated, and 1,000 and 1,072 genes were downregulated in the KNC and WLH, respectively, using a ${\geq}2$-fold cutoff change. A functional network analysis revealed that stress-related genes were downregulated in both KNC and WLH after LPS infection. The results obtained from the qRT-PCR analysis of mRNA expression of heat shock 90 (HSP90), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), activating transcription factor 4 (ATF4), sterol regulatory element-binding protein 1 (SREBP1), and X-box binding protein 1 (XBP1) were confirmed by the results of the microarray analysis. There was a significant difference in the expression of stress-associated genes between the control and LPS-injected KNC and WLH groups. The qRT-PCR analysis revealed that the stress-related $HSP90{\alpha}$ and HMGCR genes were downregulated in both LPS-injected KNC and WLH groups. However, the HSP70 and $HSP90{\beta}$ genes were upregulated only in the LPS-injected KNC group. The results suggest that the mRNA expression of stress-related genes is differentially affected by LPS stimulation, and some of the responses varied with the chicken breed. A better understanding of the LPS-induced infective stressors in chicken using the qRT-PCR and RNA microarray analyses may contribute to improving animal welfare and husbandry practices.

Effect of Water Temperature on the Expression of Stress Related Genes in Atlantic Salmon (Salmo salar) Fry (수온이 대서양 연어(Salmo salar) 치어의 체내 스트레스 관련 유전자 발현에 미치는 영향)

  • Kang, Hee Woong;Kim, Kwang Il;Lim, Hyun Jeong;Kang, Han Seung
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.131-139
    • /
    • 2018
  • The warming of water as a result of climate change affects fish habitat. Variations in water temperature affect fish physiology almost totally. The rise in water temperature due to climate change leads to hypoxia following decreased oxygen solubility and decreased binding capacity of oxygen-carrying hemoglobin. This study was conducted to evaluate the health status of Atlantic salmon (Salmo salar) fry at elevated water temperatures($20^{\circ}C$) compared with optimum water temperature ($15^{\circ}C$). The method facilitated the detection of biomarker genes using NGS RNAseq analysis and evaluation of their expression pattern using RT-qPCR analysis. The biomarker genes included interferon alpha-inducible protein 27-like protein 2A transcript variant X3, protein L-Myc-1b-like, placenta growth factor-like transcript variant X1, fibroblast growth factor receptor-like 1 transcript variant X1, transferrin, intelectin, thioredoxin-like, c-type lectin lectoxin-Thr1-like, ladderlectin-like and calponin-1. The selected biomarker genes were sensitive to changes in water temperature based on NGS RNAseq analysis. The expression patterns of these genes based on RT-qPCR were similar to those of NGS RNAseq analysis.

Development and Validation of Quick and Accurate Cephalopods Grouping System in Fishery Products by Real-time Quantitative PCR Based on Mitochondrial DNA (두족류의 진위 판별을 위한 Real-time Quantitative PCR 검사법 개발 및 검증)

  • Chung, In Young;Seo, Yong Bae;Yang, Ji Young;Kwon, Ki sung;Kim, Gun Do
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.280-288
    • /
    • 2018
  • In this study, an approach for the analysis of the five cephalopod species (octopus, long-arm octopus, squid, wet-foot octopus, beka squid) consumed in the Republic of Korea is developed. The samples were collected from the Southeast Asian countries Thailand, Indonesia, Vietnam, and China. The SYBR-green-based real-time qPCR method, based on the mitochondrial DNA genome of the five cephalopods was developed and validated. The intergroup variations in the mitochondrial DNA are evident in the bioinformatic analysis of the mitochondrial genomic DNA sequences of the five groups. Some of the highly-conserved and slightly-variated regions are identified in the mitochondrial cytochrome-c-oxidase subunit I (COI) gene, 16s ribosomal RNA (16s rRNA) gene, and 12s ribosomal RNA (12s rRNA) gene of these groups. To specify each five cephalopod groups, specific primer sets were designed from the COI, 16s rRNA and 12s rRNA regions. The specific primer sets amplified the DNA using the SYBR-green-based real-time PCR system and 11 commercially secured animal tissues: Octopus vulgaris, Octopus minor, Todarodes pacificus, Dosidicus gigas, Sepia esculenta, Amphioctopus fangsiao, Amphioctopus aegina, Amphioctopus marginatus, Loliolus beka, Loligo edulis, and Loligo chinensis. The results confirmed by a conveient way to calculate relative amplification levels between different samples in that it directly uses the threshold cycles (Ct)-value range generated by the qPCR system from these samples. This genomic DNA-based molecular technique provides a quick, accurate, and reliable method for the taxonomic classification of the animal tissues using the real-time qPCR.