DOI QR코드

DOI QR Code

Effect of Water Temperature on the Expression of Stress Related Genes in Atlantic Salmon (Salmo salar) Fry

수온이 대서양 연어(Salmo salar) 치어의 체내 스트레스 관련 유전자 발현에 미치는 영향

  • Kang, Hee Woong (Aquaculture Management Division, National Fisheries Research & Development Institute) ;
  • Kim, Kwang Il (Pathology Research Division, National Fisheries Research & Development Institute) ;
  • Lim, Hyun Jeong (Aquaculture Industry Research Division, East Sea Fisheries Research Institute) ;
  • Kang, Han Seung (Department of Genome Research, MS BioLab)
  • 강희웅 (국립수산과학원 양식관리과) ;
  • 김광일 (국립수산과학원 병리연구과) ;
  • 임현정 (동해수산연구소 양식산업과) ;
  • 강한승 (엠에스바이오랩 유전체연구부)
  • Received : 2018.04.03
  • Accepted : 2018.04.30
  • Published : 2018.06.30

Abstract

The warming of water as a result of climate change affects fish habitat. Variations in water temperature affect fish physiology almost totally. The rise in water temperature due to climate change leads to hypoxia following decreased oxygen solubility and decreased binding capacity of oxygen-carrying hemoglobin. This study was conducted to evaluate the health status of Atlantic salmon (Salmo salar) fry at elevated water temperatures($20^{\circ}C$) compared with optimum water temperature ($15^{\circ}C$). The method facilitated the detection of biomarker genes using NGS RNAseq analysis and evaluation of their expression pattern using RT-qPCR analysis. The biomarker genes included interferon alpha-inducible protein 27-like protein 2A transcript variant X3, protein L-Myc-1b-like, placenta growth factor-like transcript variant X1, fibroblast growth factor receptor-like 1 transcript variant X1, transferrin, intelectin, thioredoxin-like, c-type lectin lectoxin-Thr1-like, ladderlectin-like and calponin-1. The selected biomarker genes were sensitive to changes in water temperature based on NGS RNAseq analysis. The expression patterns of these genes based on RT-qPCR were similar to those of NGS RNAseq analysis.

기후 변화로 인한 수온의 상승은 어류 서식지에 영향을 미친다. 수온의 변화는 어류 생리 거의 모든 부분에 영향을 미치는 것으로 알려져 있다. 기후 변화에 따른 수온의 상승은 산소 용해도의 감소 및 산소 운반 헤모글로빈의 결합 능력의 감소로 인해 저산소증을 초래할 수 있다. 본 연구는 대서양 연어(Salmo salar) 치어 성장의 최적수온($15^{\circ}C$)보다 고수온($20^{\circ}C$)에 사육 시, 대서양 연어 치어의 건강상태를 평가하기 위해 수행되었다. 평가 방법은 NGS RNAseq 분석방법을 이용하여 생체지표유전자를 개발하고, RT-qPCR 분석을 이용하여 생체지표유전자의 발현양상을 조사하는 것이다. 개발한 생체지표유전자로는 interferon alpha-inducible protein 27-like protein 2A transcript variant X3, protein L-Myc-1b-like, placenta growth factor-like transcript variant X1, fibroblast growth factor receptor-like 1 transcript variant X1, transferrin, intelectin, thioredoxin-like, c-type lectin lectoxin-Thr1-like, ladderlectin-like 및 calponin-1 등이다. 선택된 생체지표 유전자는 NGS RNAseq 분석을 통해 수온변화에 민감하게 발현한 유전자들이며, RT-qPCR 분석을 통한 이들 유전자의 발현 양상은 NGS RNAseq 분석을 통한 발현 양상과 매우 유사하게 나타났다.

Keywords

References

  1. Belo VA, JM Parente, JE Tanus-Santos and MM Castro. 2016. Matrix metalloproteinase (MMP)-2 decreases calponin-1 levels and contributes to arterial remodeling in early hypertension. Biochem. Pharmacol. 118:50-58. https://doi.org/10.1016/j.bcp.2016.08.012
  2. Brown GD, JA Willment and L Whitehead. 2018. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 1. doi: 10.1038/s41577-018-0004-8.
  3. Burt JM, SG Hinch and DA Patterson. 2012. Parental identity influences progeny responses to incubation thermal stress in sockeye salmon Onchorhynchus nerka. J. Fish Biol. 80:444-462. https://doi.org/10.1111/j.1095-8649.2011.03190.x
  4. Caissie D. 2006. The thermal regime of rivers: a review. Freshw. Biol. 51:1389-1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x
  5. Chapple JP, GR Smerdon, RJ Berry and AJS Hawkins. 1998. Seasonal changes in stress-70 protein levels reflect thermal tolerance in the marine bivalve Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 229:53-68. https://doi.org/10.1016/S0022-0981(98)00040-9
  6. Chen L, J Yan, W Sun, Y Zhang, C Sui, J Qi, Y Du and L Feng. 2016. A zebrafish intelectin ortholog agglutinates both Gramnegative and Gram-positive bacteria with binding capacity to bacterial polysaccharide. Fish Shellfish Immunol. 55:729-736. https://doi.org/10.1016/j.fsi.2016.06.023
  7. Choi HS, JI Myoung, MA Park and MY Cho. 2009. A study on the summer mortality of Korean rockfish Sebastes schlegeli in Korea. J. Fish Pathol. 22:155-162.
  8. Crossin GT, SG Hinch, SJ Cooke, DW Welsh, DA Patterson, SRM Jones, AG Lotto, RA Leggatt, MT Mathes, JM Shrimpton, G Van der Kraak and AP Farrell. 2008. Exposure to high temperature influences the behaviour, physiology, and survival of sockeye salmon during spawning migration. Can. J. Zool. 86:127-140. https://doi.org/10.1139/Z07-122
  9. Ding Z, X Zhao, Q Zhan, L Cui, Q Sun, L Lin, W Wang and H Liu. 2017. Characterization and expression analysis of an intelectin gene from Megalobrama amblycephala with excellent bacterial binding and agglutination activity. Fish Shellfish Immunol. 61:100-110. https://doi.org/10.1016/j.fsi.2016.12.023
  10. Elliott JM and JA Elliott. 2010. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J. Fish Biol. 77:1793-1817. https://doi.org/10.1111/j.1095-8649.2010.02762.x
  11. Evans TG, EDD Hammill, K Kaukinen, AD Schulze, DA Patterson, KK English, JMR Curtis and KM Miller. 2011. Transcriptomics of environmental acclimatization and survival in wild adult Pacific sockeye salmon (Oncorhynchus nerka) during spawning migration. Mol. Ecol. 20:4472-4489. https://doi.org/10.1111/j.1365-294X.2011.05276.x
  12. Green CJ, P Lichtlen, NT Huynh, M Yanovsky, KR Laderoute, W Schaffner and BJ Murphy. 2001. Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor-1. Cancer Res. 61:2696-2703.
  13. Healy TM, WE Tymchuk, EJ Osborne and PM Schulte. 2010. Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches. Physiol. Genomics 41:171-184. https://doi.org/10.1152/physiolgenomics.00209.2009
  14. Hevroy EM, R Waagbo, BE Torstensen, H Takle, I Stubhaug, SM Jorgensen, T Torgersen, L Tvenning, S Susort, O Breck and T Hansen. 2012. Ghrelin is involved in voluntary anorexia in Atlantic salmon raised at elevated sea temperatures. Gen. Comp. Endocrinol. 175:118-134. https://doi.org/10.1016/j.ygcen.2011.10.007
  15. Kang DY, HW Kang, GH Kim, KC Jo and HC Kim. 2007. Effect of cold shock on the physiological responses of the cultured mullet, Mugil haematocheilus in winter. Korean J. Fish. Aquat. Sci. 40:226-233.
  16. Kang HW, EY Chung, DY Kang, YJ Park, KC Jo and GH Kim. 2008. Gonadal maturation and spawning of river puffer Takifugu obscurus indoor cultured in low salinity. J. Aquaculture 21:331-338.
  17. Kassahn KS, MJ Caley, AC Ward, AR Connolly, G Stone and RH Crozier. 2007. Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Mol. Ecol. 16:1749-1763. https://doi.org/10.1111/j.1365-294X.2006.03178.x
  18. Liu SK, XL Wang, FY Sun, JR Zhang, JB Feng, H Liu, KV Rajendran, LY Sun, Y Zhang, YL Jiang, E Peatman, L Kaltenboeck, H Kucuktas and ZJ Liu. 2013. RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiol. Genomics 45:462-476. https://doi.org/10.1152/physiolgenomics.00026.2013
  19. Lin ST, GD Zheng, YW Sun, J Chen, XY Jiang and SM Zou. 2015. Divergent functions of fibroblast growth factor receptor-like 1 genes in grass carp (Ctenopharyngodon idella). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 187:31-38. https://doi.org/10.1016/j.cbpb.2015.05.003
  20. Liyanage DS, WKM Omeka, GI Godahewa and J Lee. 2018. Molecular characterization of thioredoxin-like protein 1 (TXNL1) from big-belly seahorse Hippocampus abdominalis in response to immune stimulation. Fish Shellfish Immunol. 75:181-189. https://doi.org/10.1016/j.fsi.2018.02.009
  21. Logan CA and GN Somero. 2011. Effects of thermal acclimation on transcriptional responses to acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper). Am. J. Physiol. Regul. Integr. Comp. Physiol. 300:R1373-R1383. https://doi.org/10.1152/ajpregu.00689.2010
  22. McCormick SD, RA Cunjak, B Dempson, MF O'Dea and JB Carey. 1999. Temperature-related loss of smolt characteristics in Atlantic salmon (Salmo salar) in the wild. Can. J. Fish. Aquat. Sci. 56:1649-1658. https://doi.org/10.1139/f99-099
  23. Morita K and A Nakashima. 2015. Temperature seasonality during fry out-migration influences the survival of hatchery-reared chum salmon Oncorhynchus keta. J. Fish Biol. 87:1111-1117. https://doi.org/10.1111/jfb.12767
  24. Nuez-Ortin WG, CG Carter, PD Nichols, IR Cooke and R Wilson. 2018. Liver proteome response of pre-harvest Atlantic salmon following exposure to elevated temperature. BMC Genomics 19:133. https://doi.org/10.1186/s12864-018-4517-0
  25. Quinn NL, CR McGowan, GA Cooper, BF Koop and WS Davidson. 2011a. Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress. Physiol. Genomics 43:685-696. https://doi.org/10.1152/physiolgenomics.00008.2011
  26. Quinn NL, CR McGowan, GA Cooper, BF Koop and WS Davidson. 2011b. Ribosomal genes and heat shock proteins as putative markers for chronic, sublethal heat stress in Arctic charr: applications for aquaculture and wild fish. Physiol. Genomics 43:1056-1064. https://doi.org/10.1152/physiolgenomics.00090.2011
  27. Reid A, KM Young and JS Lumsden. 2011. Rainbow trout Oncorhynchus mykiss ladderlectin, but not intelectin, binds viral hemorrhagic septicemia virus IVb. Dis. Aquat. Org. 95:137-143. https://doi.org/10.3354/dao02358
  28. Schick M, S Habringer, JA Nilsson and U Keller. 2017. Pathogenesis and therapeutic targeting of aberrant MYC expression in haematological cancers. Br. J. Haematol. 179:724-738. https://doi.org/10.1111/bjh.14917
  29. Somero GN. 2004. Adaptation of enzymes to temperature: searching for basic "strategies". Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 139:321-333. https://doi.org/10.1016/j.cbpc.2004.05.003
  30. Somero GN. 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'. J. Exp. Biol. 213:912-920. https://doi.org/10.1242/jeb.037473
  31. Soucek L, J Whitfield, CP Martins, AJ Finch, DJ Murphy, NM Sodir, AN Karnezis, LB Swigart, S Nasi and GI Evan. 2008. Modelling Myc inhibition as a cancer therapy. Nature 455:679-683. https://doi.org/10.1038/nature07260
  32. Suomela S, L Cao, A Bowcock and U Saarialho-Kere. 2004. Interferon alpha-inducible protein 27 (IFI27) is upregulated in psoriatic skin and certain epithelial cancers. J. Invest. Dermatol. 122:717-721. https://doi.org/10.1111/j.0022-202X.2004.22322.x
  33. Swansburg E, G Chaput, D Moore, D Caissie and N El-Jabi. 2002. Size variability of juvenile Atlantic salmon: links to environmental conditions. J. Fish Biol. 61:661-683. https://doi.org/10.1111/j.1095-8649.2002.tb00903.x
  34. Thorne MAS, G Burns, KPP Fraser, G Hillyard and MS Clark. 2010. Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Mar. Genom. 3:35-44. https://doi.org/10.1016/j.margen.2010.02.002
  35. Wedemeyer GA and DJ McLeay. 1981. Methods for determining the tolerance of fishes to environmental stressors. pp. 247-276. In Stress and Fish (Pickering AD ed.). Academic Press, London, U.K.
  36. Windisch HS, R Kathover, HO Portner, S Frickenhau and M Lucassen. 2011. Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301:R1453-R1466. https://doi.org/10.1152/ajpregu.00158.2011
  37. Yin X, L Mu, X Bian, L Wu, B Li, J Liu, Z Guo and J Ye. 2018. Expression and functional characterization of transferrin in Nile tilapia (Oreochromis niloticus) in response to bacterial infection. Fish Shellfish Immunol. 74:530-539. https://doi.org/10.1016/j.fsi.2018.01.023