• Title/Summary/Keyword: q-Euler number and polynomials

Search Result 7, Processing Time 0.02 seconds

A RELATION OF GENERALIZED q-ω-EULER NUMBERS AND POLYNOMIALS

  • Park, Min Ji;Kim, Young Rok;Lee, Hui Young
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.413-421
    • /
    • 2017
  • In this paper, we study the generalizations of Euler numbers and polynomials by using the q-extension with p-adic integral on $\mathbb{Z}_p$. We call these: the generalized q-${\omega}$-Euler numbers $E^{({\alpha})}_{n,q,{{\omega}}(a)$ and polynomials $E^{({\alpha})}_{n,q,{\omega}}(x;a)$. We investigate some elementary properties and relations for $E^{({\alpha})}_{n,q,{{\omega}}(a)$ and $E^{({\alpha})}_{n,q,{\omega}}(x;a)$.

AN EXTENSION OF GENERALIZED EULER POLYNOMIALS OF THE SECOND KIND

  • Kim, Y.H.;Jung, H.Y.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.465-474
    • /
    • 2014
  • Many mathematicians have studied various relations beween Euler number $E_n$, Bernoulli number $B_n$ and Genocchi number $G_n$ (see [1-18]). They have found numerous important applications in number theory. Howard, T.Agoh, S.-H.Rim have studied Genocchi numbers, Bernoulli numbers, Euler numbers and polynomials of these numbers [1,5,9,15]. T.Kim, M.Cenkci, C.S.Ryoo, L. Jang have studied the q-extension of Euler and Genocchi numbers and polynomials [6,8,10,11,14,17]. In this paper, our aim is introducing and investigating an extension term of generalized Euler polynomials. We also obtain some identities and relations involving the Euler numbers and the Euler polynomials, the Genocchi numbers and Genocchi polynomials.

THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • Jang, Lee-Chae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1181-1188
    • /
    • 2010
  • q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.

SOME IDENTITIES OF THE GENOCCHI NUMBERS AND POLYNOMIALS ASSOCIATED WITH BERNSTEIN POLYNOMIALS

  • Lee, H.Y.;Jung, N.S.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1221-1228
    • /
    • 2011
  • Recently, several mathematicians have studied some interesting relations between extended q-Euler number and Bernstein polynomials(see [3, 5, 7, 8, 10]). In this paper, we give some interesting identities on the Genocchi polynomials and Bernstein polynomials.

A NOTE ON THE TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • He, Yuan;Zhang, Wenpeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.659-665
    • /
    • 2013
  • In this note, the $q$-extension of the twisted Lerch Euler zeta functions considered by Jang [Bull. Korean Math. Soc. 47 (2010), no. 6, 1181-1188] is further investigated, and the generalized multiplication theorem for the $q$-extension of the twisted Lerch Euler zeta functions is given. As applications, some well-known results in the references are deduced as special cases.

SOME IDENTITIES ON THE BERNSTEIN AND q-GENOCCHI POLYNOMIALS

  • Kim, Hyun-Mee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1289-1296
    • /
    • 2013
  • Recently, T. Kim has introduced and analysed the $q$-Euler polynomials (see [3, 14, 35, 37]). By the same motivation, we will consider some interesting properties of the $q$-Genocchi polynomials. Further, we give some formulae on the Bernstein and $q$-Genocchi polynomials by using $p$-adic integral on $\mathbb{Z}_p$. From these relationships, we establish some interesting identities.