본 연구는 가상 인플루언서 마케팅의 출발선에서 가상 인플루언서에 대한 수용자의 반응을 알아보는 것을 목적으로 한다. 이에 국내에서 활동 중인 가상 인플루언서의 인스타그램에서 게시글과 댓글, '좋아요' 수와 동영상 리뷰 수를 수집하였다. 자료의 수집과 분석에는 Python 3.7과 Textom을 사용하였다. 감성 분석결과, 긍정 감성이 부정과 중립의 감성보다 높게 나타났으며, 긍·부정 모두 가상 인플루언서의 외모가 주요한 요인으로 나타났다. 중립의 감성에서 가상 인플루언서에 대한 소비자의 관심을 유추할 수 있었다. 본 연구는 가상 인플루언서에 대한 소비자의 반응을 알아보고 가상 인플루언서에 대한 긍정과 부정의 감정에 대한 요인을 파악하여, 가상 인플루언서 마케팅의 전략 수립에 도움이 될 자료를 제시했다는 것에 그 의의가 있다.
삽교호로 유입하는 곡교천 유역의 홍수시 유출량을 추정하기 위해서 Tensorflow를 활용하여 파이썬 기반의 LSTM 모형을 구축하였다. 층의 깊이가 성능에 미치는 영향을 분석하기 위해, 은닉층의 깊이를 2, 4, 6층으로 증가시키면서, 선행시간 1시간부터 5시간까지 예측을 수행하였으며, 은닉층의 개수가 4개일 때가 가장 우수한 성능을 나타내었다. 학습에 사용하는 입력자료의 길이 즉, 시퀀스길이가 모형의 성능에 미치는 영향을 파악하고자 시퀀스길이를 3시간, 5시간, 7시간으로 증가시키면서 모형을 실행한 결과, 시퀀스길이가 3시간 일 때, 전 시간대에 걸쳐 예측 성능이 우수한 것으로 분석되었다. 모형 검증에서 극한 강우 3건에 대하여 예측을 수행한 결과 선행시간 1시간에 대하여 평균 NSE 0.96 이상의 높은 정확도를 나타내었으며, 선행시간 2시간 이상에 대하여 정확도는 점차적으로 낮아지는 것으로 확인되었다. 결론적으로 시퀀스길이 3시간을 사용하여 선행시간 1시간에 대한 예측을 수행한다면 곡교천 강청 관측소의 홍수위를 높은 수준의 정확도로 예측할 수 있음을 확인하였다.
프로그래밍 학습은 오랫동안 어려운 과목으로 인식되어왔다. 이를 해결하기 위하여 다양한 연구가 진행되고 있는데, 본 연구에서는 학습자 특성 중 하나인 성별을 기반으로 프로그래밍 학습에서 이탈하려는 동기에 대한 연구를 진행하였다. 본 연구에서는 스크래치를 학습하는 분반과 파이썬을 학습하는 분반을 남학생과 여학생으로 나누어 학습이탈동기의 사전-사후 설문을 진행하였다. 연구 결과로는 남학생이 여학생보다 프로그래밍 학습에 대한 자신감은 높았으나 전체적인 항목에서는 큰 차이가 없었다. 또한 성별마다 학생들이 선택한 전공에 따라서 학습이탈동기의 차이를 발견할 수 있었다. 본 연구를 통하여 프로그래밍 학습에서 학습자 특성을 고려하여 학습 효율 및 만족도를 높일 수 있는지 개선하는데 도움이 될 것이라고 기대한다.
애플의 어플리케이션 마켓인 App Store에 어플리케이션을 등록하기 위해서는 애플 검증 센터를 통해 엄격한 검증 과정을 통과해야 한다. 그렇기 때문에 스파이웨어 어플리케이션의 유입이 까다롭다. 하지만 정상적인 어플리케이션의 취약점을 통해서도 악성코드가 실행될 수 있다. 이러한 공격을 방지하기 위해서는 어플리케이션에서 발생할 수 있는 잠재적 취약점을 패치하기 위해 조기에 발견하고 분석하는 연구가 필요하다. 잠재적 취약점을 증명하기 위해서는 취약점의 근본 원인을 파악하고 악용 가능성을 분석해야 한다. iOS 어플리케이션을 분석하는 도구로는 개발 도구인 Xcode에 내장되어 있는 LLDB라는 이름의 디버거를 활용할 수 있다. LLDB에는 다양한 기능이 존재하며 이 기능들은 API로도 제공되어 Python에서도 사용이 가능하다. 따라서 본 논문에서 LLDB API를 활용하여 iOS 어플리케이션의 잠재적 취약점을 효율적으로 분석하는 방법에 대해 제안한다.
본 연구에서는 "4차 산업"과 관련된 논문들의 세부 연구 주제를 파악하기 위하여 텍스트 마이닝 기법을 이용하여 논문들을 분석하였다. 이를 위하여 2016년부터 2019년까지 한국학술지인용색인(KCI)에서 "4차 산업"이라는 키워드로 논문을 검색하여 총 685편의 논문을 수집하였다. 논문 수집을 위해서는 Python 기반의 웹 스크랩핑 프로그램을 사용하였으며, 자료 분석을 위해서는 R 언어로 구현된 LDA 알고리즘 기반의 토픽 모델링 기법들을 활용하였다. 수집된 논문들에 대한 Perplexity 분석 결과, 9가지 토픽이 최적으로 결정되었고 수집된 논문들의 9가지 대표 토픽들을 Gibbs 샘플링 방법을 사용하여 추출하였다. 분석 결과, 인공지능, 빅데이터, 사물인터넷, 디지털, 네트워크 등이 상위 주요 기술들로 나타났으며, 산업, 정부, 교육 현장, 일자리 등 4차 산업과 관련한 다양한 분야에서 주요 기술들로 인한 변화에 대한 연구들이 이루어져 왔음을 확인할 수 있었다.
최근 각 대학에서 소프트웨어교육을 강조하여 교양과목에 많이 편성하고 있다. 하지만 학생들은 프로그래밍 학습을 어려워하거나 프로그래밍 학습 동기가 부족하거나 배우려고 하는 의욕이 없는 경우가 많다. 본 연구에서 회복탄력성을 알아보고자 하는 이유는 프로그래밍 학습의 실패를 극복하여 포기하지 않고 다시 학습을 진행할 수 있는 회복하는 힘을 가질 수 있도록 지도하기 위함이다. 본 연구에서는 스크래치를 학습하는 학생 집단과 파이썬을 학습하는 학생 집단을 대상으로 회복탄력성 사전-사후 검사를 진행하였다. 연구결과로는 스크래치는 학생들이 다소 쉽게 받아들이고 열심히 하려는 모습을 보였지만, 파이썬은 상대적으로 스크래치보다 어려움이 있었음을 알 수 있었다. 본 연구를 통하여 프로그래밍 학습을 지속할 수 있는 요인을 파악하는데 도움이 될 것이라고 기대한다.
컴퓨터 구조의 연구 결과, 특정 영역의 하드웨어를 개발하는 과정에서 가격 대 에너지 성능의 획기적인 개선이 이뤄진다고 알려져 있다. 본 논문은 인공신경망(NN)의 추론을 가속화시킬 수 있는 텐서 처리부(TPU) ASIC에 대한 분석을 수행하였다. 텐서 처리부의 핵심장치는 고속의 연산이 가능한 MAC 행렬곱셈기와 소프트웨어로 관리되는 온칩 메모리이다. 텐서 처리부의 실행모델은 기존의 CPU와 GPU의 실행모델보다 인공신경망의 반응시간 요구사항을 제대로 충족시킬 수 있으며, 수많은 MAC과 큰 메모리를 장착함에도 불구하고 면적이 작고 전력 소비가 낮다. 텐서플로우 벤치마크 프레임워크에 대하여 텐서 처리부를 활용함으로써, CPU 또는 GPU보다 높은 성능과 전력 효율을 나타낼 수가 있다. 본 논문에서는 텐서 처리부를 분석하고, 파이썬을 이용하여 모델링한 OpenTPU에 대하여 모의실행을 하였으며, 그 핵심장치인 행렬 곱셈부에 대한 합성을 시행하였다.
대학 교육은 컴퓨팅 사고력 기반의 융합 인재 양성을 강조하고 있으며, 문제 해결력을 향상시키기 위해 소프트웨어 교육을 강조하고 있다. 본 연구에서는 문제해결학습 기반의 파이선 프로그래밍을 통한 소프트웨어 교육을 실시하고, 이에 대한 만족도와 학업 성적간의 상관관계를 분석한다. 문제해결학습 기반의 소프트웨어 교육을 받는 대학생 143명을 대상으로 설문조사를 실시한 결과, 실제 학업 성적과의 상관관계 분석과 다중회귀분석을 통해 문제해결학습의 만족도와 학업 성적 간에 관련성이 있고, 학업 성적에도 영향을 주는 것으로 나타났다. 다양한 문제상황을 파악하고 컴퓨팅 사고력을 활용하여 문제를 해결하는 능력은 점점 더 중요해질 것이므로, 대학 소프트웨어 교육은 문제해결학습 기반으로 실시하는 것이 바람직한 방향이 될 것이다.
대부분의 천연가스(NG)는 공기 중으로 누출 되며 그중에서도 메탄가스의 누출은 기후에 많은 영향을 준다. 미국 도시의 거리에서 메탄가스 누출 데이터를 수집하였다. 본 논문은 메탄가스누출 정도를 예측하는 딥러닝(Deep Neural Network)방법을 제안하였으며 제안된 방법은 OrdinalEncoder(OE) 기반 K-means clustering과 Multilayer Perceptron(MLP)을 활용하였다. 15개의 특징을 입력뉴런과 오류역전파 알고리즘을 적용하였다. 데이터는 실제 미국의 거리에서 누출되는 메탄가스농도 오픈데이터를 활용하여 진행하였다. 우리는 OE 기반 K-means알고리즘을 적용하여 데이터를 레이블링 하였고 NG누출 예측을 위한 정규화 방법 OE, MinMax, Standard, MaxAbs. Quantile 5가지 방법을 실험하였다. 그 결과 OE 기반 MLP의 인식률이 97.7%, F1-score 96.4%이며 다른 방법보다 상대적으로 높은 인식률을 보였다. 실험은 SPSS 및 Python으로 구현하였으며 실제오픈 데이터를 활용하여 실험하였다.
본 연구는 초등학생의 논리성 향상을 위해 파이썬을 활용한 탐색 알고리즘 기반 수행시간 비교 및 분석 교육 프로그램을 개발하고 적용하여 그 효과를 분석했다. 본 교육 프로그램은 ${\bigcirc}{\bigcirc}$ 도내 초등학교 6학년 133명을 대상으로 실시한 사전 요구분석 결과를 활용하였고, ADDIE 모형의 절차에 따라 개발하였다. 개발한 교육 프로그램의 효과를 검증하기 위해서 ${\bigcirc}{\bigcirc}$대학교에서 실시한 교육기부 프로그램의 지원자 25명을 대상으로 6일간 42차시 수업을 진행하였고, GALT검사를 통해 교육의 사전 사후 효과를 비교 분석하였다. 분석해 본 결과, 본 연구에서 개발한 SW교육 프로그램이 초등학생의 논리성에 긍정적인 영향을 줄 수 있다는 것을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.