• Title/Summary/Keyword: pyrethroid insecticide

Search Result 39, Processing Time 0.03 seconds

Analysis of Pyrethroid Resistance Allele in Malaria Vector Anopheles sinensis from Malaria High-risk Area (말라리아 위험지역에서 채집된 말라리아 매개모기 Anopheles sinensis의 피레스로이드계 저항성 대립형질 분석)

  • Choi, Kwang Shik;Lee, Seung-Yeol;Hwang, Do-Un;Kim, Heung-Chul;Chang, Kyu-Sik;Jung, Hee-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.286-292
    • /
    • 2016
  • Malaria is mainly transmitted by Anopheles sinensis which is dominant species in malaria high-risk area, northern part of Gyeonggi province in Korea. Pyrethroid insecticide is used for malaria vector, An. sinensis in Korea and the previous investigation consistently reported insecticide resistance from the vector. This study investigated insecticide susceptible and resistant alleles from An. sinensis and the status of malaria vector control in malaria high-risk area. For the study, An. sinensis collected from Paju, Gimpo and Ganghwa were sequenced for kdr detection. In Paju, there was no homozygous susceptibility and all of tested samples had homozygous or heterozygous resistance. There were 6.7% for susceptible homozygosity and 93.3% for resistant homozygosity or heterozygosity in Gimpo. Furthermore, the percentages of homozygous susceptibility and homozygous or heterozygous resistance in Ganghwa were 5.7% and 94.3% respectively. The results showed that the frequency of the insecticide resistance from An. sinensis in malaria high-risk area were increased much more than the previous investigation. Hence, this study suggests that malaria vector control programs should have to be prepared for the management of pyrethroid insecticide resistance.

Behavior of Synthetic Pyrethroid Insecticide Bifenthrin in Soil Environment II) Identification of Degradation Product and Leaching of Bifenthrin in soil (합성 Pyrethroid 계 살충제인 Bifenthrin의 토양환경중 동태 제2보. Bifenthrin의 토양중 분해산물의 동정 및 용탈)

  • Kim, Jang-Eok;Choi, Tae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.2
    • /
    • pp.125-132
    • /
    • 1992
  • This study was conducted to know degradation products of the synthetic pyrethroid insecticide bifenthrin under soil, aqueous solution and UV-light irradation, and know its movement by leaching in soil. The major degradation product of bifenthrin was identified with 2-methylbiphenyl -3-y1 methanol by HPLC, UV, Mass and NMR under soil, aqueous solution and UV-light irradiation, The main degradation route was hydrolysis of the ester linkage. On exposure to UV-light, bifenthrin was decomposed almost completely in concentrations of 10 and 100 ppm in 24 hr but decomposed about 80% in 1,000 ppm. Bifenthrin was immobile in soil column system and on soil thin-layer chromatography system. Mostly bifenthrin remained in the 0-2.0㎝ layer of soil column and soil TLC.

  • PDF

Uterotrophic Assays of Pyrethroid Insecticides in Immature Rats

  • Kim, Soon-Sun;Rhee, Gyu-Seek;Lee, Rhee-Da;Kwack, Seung-Jun;Lim, Kwon-Jo;Yhun, Hyo-Jung;Park, Kwang-Sik;Park, Kui-Lea
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.149-149
    • /
    • 2003
  • It is well known that many pesticides possess hormonal activity, and thus have been classified as endocrine disruptors. Currently, pyrethroid insecticides are in worldwide use to control in door pests, providing potential for environmental exposure. A few studies of hormonal activities of these pyrethroid insecticides, however, have been reported, and are controversial between studies.(omitted)

  • PDF

Monitoring of Pyrethroid Resistance Allele Frequency in the Common Bed Bug (Cimex lectularius) in the Republic of Korea

  • Cho, Susie;Kim, Heung-Chul;Chong, Sung-Tae;Klein, Terry A.;Kwon, Deok Ho;Lee, Si Hyeock;Kim, Ju Hyeon
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.1
    • /
    • pp.99-102
    • /
    • 2020
  • Two-point mutations (V419L and L925I) on the voltage-sensitive sodium channel of bed bugs (Cimex lectularius) are known to confer pyrethroid resistance. To determine the status of pyrethroid resistance in bed bugs in Korea, resistance allele frequencies of bed bug strains collected from several US military installations in Korea and Mokpo, Jeollanamdo, from 2009-2019 were monitored using a quantitative sequencing. Most bed bugs were determined to have both of the point mutations except a few specimens, collected in 2009, 2012 and 2014, having only a single point mutation (L925I). No susceptible allele was observed in any of the bed bugs examined, suggesting that pyrethroid resistance in bed bug populations in Korea has reached a serious level. Large scale monitoring is required to increase our knowledge on the distribution and prevalence of pyrethroid resistance in bed bug populations in Korea. Based on present study, it is urgent to restrict the use of pyrethroids and to introduce effective alternative insecticides. A nation-wide monitoring program to determine the pyrethroid resistance level in bed bugs and to select alternative insecticides should be implemented.

Urinary concentration of 3-phenoxybenzoic acid in elementary students in South Korea

  • Jo, Hye Mi;Ha, Mina;Lee, Won Jin
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.9.1-9.5
    • /
    • 2015
  • Objectives Pyrethroid pesticides are among the most commonly using insecticides in South Korean households and have been the subject of considerable interest among public health professionals for their potential health effects. The objective of this study is to examine the level of urinary 3-phenoxybenzoic acid (3-PBA) among elementary students in South Korea. Methods We conducted a cross-sectional study to evaluate pyrethroid pesticide exposure levels by measuring the urinary metabolites of 3-PBA using a gas chromatographymass spectrometry method in March 2011. Study participants were 70 Asan-area and Incheon-area elementary students. Results All respondents had values above the detection limit, and the geometric means of 3-PBA in all children were $1.85{\mu}g/L$ and $1.46{\mu}g/g$ creatinine. Children with the top 10% urinary levels of 3-PBA were more likely to be girls, under nine years of age, living in a rural area, and living in a residential type apartment. Conclusions South Korean children have a higher concentration of urinary 3-PBA compared with those of other countries. Further research identifying exposure pathways and intervention efforts to reduce environmental pesticide use are needed in South Korea.

Estrogenic Activities of Pyrethroid Compounds in MCF-7 BUS cells

  • Han, Soon-Young;Shin, Hae-Ho;Kang, Il-Hyun;Kim, In-Young;Kim, Hyung-Sik;Lee, Su-Jung;Moon, Hyun-Ju;Kim, Tae-Sung;Moon, A-Ree;Choi, Kwang-Sik
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.293.1-293.1
    • /
    • 2002
  • Pyrethroids are extensively used as insecticide in agriculture and home. Several studies have reported that yrethroids are relatively safe to humans and wildlife. However. some studies have suggested that pyrethroids ossess estrogen-like activity. Thus. the purpose of this study was to investigate the effects of pyrethroid ompounds on cell proliferation. and expression of ERs and pS2 using estrogen receptor positive human breast ancer cell line (MCF-7 BUS celis). (omitted)

  • PDF

Development and Evaluation of the KOrea Insecticide Exposure Model (KOIEM) for Managing Insecticides

  • Jung, Ja-Eun;Lee, Yong-Ju;Kim, Yoon-Kwan;Lee, Sung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1183-1189
    • /
    • 2012
  • The KOrea Insecticide Exposure Model (KOIEM) was developed to facilitate ecological risk-based management of Korean insecticides. KOIEM, applied as a multimedia fate model, evaluates water, soil, air, and vegetation compartments based on three water-body types (streams, ditches, and ponds). Deltamethrin, a pyrethroid insecticide, was used to evaluate and create the model parameters. After exposure of both the stream and the ditch to deltamethrin, the KOIEM-predicted concentrations and the observed levels were in agreement. The model was also evaluated using the accuracy factor (AF), which was 4.32 and 0.35 for the stream and ditch, respectively. Ecological risk assessment was also performed to evaluate the application of KOIEM for four popular South Korean insecticides (cypermethrin, deltamethrin, diazinon, and permethrin). Despite the insecticides having low PECs in water, their risk quotients were typically above 1.0. Thus, KOIEM modification would be required in further studies to account for spatial variation.

An Integrated Biological Control Using an Endoparasitoid Wasp (Cotesia plutellae) and a Microbial Insecticide (Bacillus thuringiensis) against the Diamondback Moth, Plutella xylostella (배추좀나방에 대한 프루텔고치벌과 미생물농약의 통합생물방제)

  • Kim, Kyusoon;Kim, Hyun;Park, Young-Uk;Kim, Gil-Hah;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.52 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • All tested Korean populations of the diamondback moth, Plutella xylostella, are known to be resistant especially against pyrethroid insecticides by mutation in its molecular target, para-sodium channel. Moreover, P. xylostella is able to develop resistance against most commercial insecticides. This study was performed to develop an efficient control technique against P. xylostella by a combined treatment of an endoparasitoid wasp, Cotesia plutellae, and a microbial insecticide, Bacillus thuringiensis. To investigate any parasitism preference of C. plutellae against susceptible and resistant P. xylostella, five different populations of P. xylostella were compared in insecticide susceptibilities and parasitism by C. plutellae. These five P. xylostella populations showed a significant variation against three commercial insecticides including pyrethroid, organophosphate, neonicotinoid, and insect growth regulator. However, there were no significant differences among five P. xylostella populations in their parasitic rates by C. plutellae. Moreover, parasitized larvae of P. xylostella showed significantly higher susceptibility to B. thuringiensis. As an immunosuppressive agent, viral ankyrin genes (vankyrins) encoded in C. plutellae were transiently expressed in nonparasitized larvae. Expression of vankyrins significantly enhanced the efficacy of B. thuringiensis against the third instar larvae of P. xylostella. Thus an immunosuppression induced by C. plutellae enhanced the insecticidal efficacy of B. thuringiensis. These results suggest that a combined treatment of C. plutellae and B. thuringiensis may effectively control the insecticide-resistant populations of P. xylostella.