• Title/Summary/Keyword: pushover 해석

Search Result 96, Processing Time 0.018 seconds

Pushover Analysis for Nonlinear Seismic Response of Reinforced Concrete Mixed Building Structures (철근콘크리트 복합구조물의 비선형 지진응답산정을 위한 Pushover해석)

  • Kang Pyeong-Doo;Jun Dae-Han;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.631-638
    • /
    • 2006
  • This paper considers the nonlinear direct spectrum method to estimate seismic performance of mixed building structures without iterative computations, given dynamic property $T_1$ from stiffness skeleton curve and nonlinear pseudo acceleration $A_{1y}$ and/or ductility ratio $\mu$ from response spectrum. Nonlinear response history analysis has been performed and analysed with various earthquakes for evaluation of correctness and confidence of nonlinear direct spectrum method.

  • PDF

Seismic Performance Evaluation of Multi-Span Bridges considering Effect of Lateral Load Distributions and Equivalent SDOF methods (횡하중 분포와 등가단자유도 방법의 영향을 고려한 다경간 교량의 내진성능 평가)

  • Song, Jong-Keol;Nam, Wang-Hyun;Chung, Yeong-Hwa
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.163-171
    • /
    • 2006
  • To evaluate inelastic seismic responses of multi-span-bridge, the equivalent single-degree-of-freedom (ESDOF) methods and the lateral load distributions are applied to the capacity spectrum method(CSM). From the pushover analysis results using the four ESDOF methods and the six types lateral load distributions, the ESDOF method more than lateral load distribution is found to have an important influence upon the pushover analysis. The effects of the higher mode on the bridge seismic behaviors are also increased as the number of pier increase. Therefore, it can be concluded that lateral load distributions and ESDOF methods for reflection of higher mode effects should be considered in the seismic analysis of the bridge structural.

  • PDF

A Study on the Behavior Properties of Residential-Commercial Building by Pushover Analysis (정적탄소성해석에 의한 복합구조물의 거동특성에 관한 연구)

  • 강병두;전대한;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.209-216
    • /
    • 2000
  • The purpose of this study is to investigate elasto-plastic behaviour and estimate ultimate resistance capacity of the residential-commercial building subjected to lateral force along the height of structure. Four types of residential-commercial building are chosen as analytical models and investigated by pushover analysis. Pushover analysis estimates initial elastic stiffness, post-yielding stiffness, and plastic hinges on each story of structures through three-dimensional nonlinear analysis program CANNY-99. Skeleton curve of bending stiffness model is bilinear, shear stiffness model is trilinear, and axial stiffness model is elastic. Skeleton curve of axial stiffness model has the axial compression and tension stiffness of reinforced concrete members. This study presents the change of inter story drift, story stiffness and hinge of story and member.

  • PDF

Error Analysis of Nonlinear Direct Spectrum Method to Various Earthquakes (다양한 지진에 따른 비선형 직접스펙트럼법의 오차해석)

  • 강병두;박진화;전대환;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.53-60
    • /
    • 2002
  • It has been recognized that damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the inelastic response is required. The methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. Some codes proposed the capacity spectrum method based on the nonlinear static(pushover) analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method to evaluate seismic Performance of structure, without iterative computations, given the structural initial elastic period and yield strength from the pushover analysis, especially for multi degree of freedom structures. The purpose of this paper is to investigate accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters.

  • PDF

The Seismic Response Evaluation of Shear Buildings by Various Approximate Nonlinear Methods (비선형 약산법들에 의한 전단형 건물의 지진응답평가)

  • Kim, Jae-Ung;Kang, Pyeong-Doo;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.75-86
    • /
    • 2005
  • In performance-based design methods, it is clear that the evaluation of the nonlinear response is required. Analysis methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. The nonlinear time analysis is the most accurate method in computing the nonlinear response of structures, but it is time-consuming and necessitate more efforts. Some codes proposed the capacity spectrum method based on the nonlinear static analysis to determine earthquake-induced demand. The nonlinear direct spectrum method is proposed and studied to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from pushover analysis. The purpose of this paper is to compare the accuracy and the reliability of approximate nonlinear methods with respect to shear buildings and various earthquakes. The conclusions of this study are summarized as follows: 1) Linear capacity spectrum method may fail to find a convergent answer or make a divergence. Even if a convergent answer is found, it has a large error in some cases and the error varies greatly depending on earthquakes. 2) Although nonlinear capacity spectrum method need much less calculation than capacity spectrum method and find an answer in any case, it may be difficult to obtain an accurate answer and generally large error occurs. 3) The nonlinear direct spectrum method is thought to have good applicability because it produce relatively correct answer than other methods directly from pushover curves and nonlinear response spectrums without additional and iterative calculations.

Design of Lateral Load Resisting System using Nonlinear Static Analysis (비선형 정적해석을 통한 횡저항 시스템의 보유성능 평가 및 설계방안 연구)

  • Song, Jin-Gyu;Kim, Geon-Woo;Jung, Sung-Jin;Song, Young-Hoon;Lee, Seung-Chang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.9-16
    • /
    • 2006
  • The design practice of the lateral resisting system has been traditionally dependent on the experience and know-how of a structural engineer. And the method to reflect the evaluation results of building's capacity on design process doesn't exist. The proposal of a rational design of the lateral load resisting system is based on the available full capacity $(R_{ac})$ of a building and the minimum required capacity $(R_{code})$ suggested in the code. This study suggests thai nonlinear static analysis, which is the estimation of the lateral capacity with the pushover analysis, be included in the existing design procedure of the structure. After finishing the basic structural design, the lateral resisting capacity ol a building is estimated. At the phase of nonlinear static analysis, pushover analysis is peformed to define the fully yielded baseshear $(V_Y)$. When the design wind baseshear $(V_{wind})$ is bigger than the design seismic baseshear $(V_D)$, the value is checked to determine whether or not it is smaller than the $V_Y$. After confirming that it is smaller, the $R_{ac}$ of the structure is computed. If the $V_D$ is bigger at first, only the $R_{ac}$ is computed. When the value of the estimation shows remarkable differences with the $R_{code}$, repetition of the design modification is needed for those approximate to the $R_{code}$. Application of the proposed design procedure to 2-D steel braced RC buildings has proven to be efficient.

Inelastic Behavior of Reinforced Concrete Frame Structure with Shear Strength of Masonry Wall (조적벽의 전단강도를 고려한 철근콘크리트골조의 비탄성 거동)

  • Yoon, Tae-Ho;Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4216-4222
    • /
    • 2011
  • In this study the inelastic behavior of the existing school buildings with infilled masonry walls is analysed by pushover method. The shear stiffness and strength of masonry wall is calculated from the prior experimets and verified by inelastic analysis. The height of infilled masonry wall affects the structural behavior. The higher the masonry wall height, the higher the initial shear stiffness and strength of masonry wall. As the cracks are developed, the strength of masonry wall is much decreased. The proposed inelastic analysis method shows similar results with the experiments and can be used as inelastic analysis model of reinforced concrete buildings with infilled masonry walls.

Nonlinear Static Analysis for Seismic Performance Evaluation of Multi-Span Bridges Considering Effect of Equivalent SDOF Methods (등가단자유도 방법의 영향을 고려한 다경간 교량의 내진성능 평가를 위한 비탄성 정적해석)

  • Song, Jong-Keol;Nam, Wang-Hyun;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.473-484
    • /
    • 2006
  • The capacity spectrum method (CSM) can be used to simply estimate the maximum displacement response of the nonlinear structures. To evaluate seismic performance of multi-span bridges using the CSM, the representative response for structural system should be derived from the multi-degree-of-freedom (MDOF) responses by using the equivalent single-degree-of-freedom (ESDOF) method. The ESDOF method is used to calculate the capacity curve of the structural system from the pushover curves of all piers or structural members estimated by the pushover analysis. In order to evaluate an accuracy of ESDOF methods used in the CSM, the maximum displacements estimated by the CSM incorporating the several ESDOF methods are compared to those by the inelastic time-history analysis for several artificial earthquakes corresponding to the design spectrum.

Pushover Analysis of Reinforced Concrete Wall-Frame Structures Using Equivalent Column Model (등가 기둥 모델을 이용한 철근콘크리트 전단벽-골조 구조물의 푸쉬오버 해석)

  • Kim, Yong Joon;Han, Arum;Kim, Seung Nam;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.53-61
    • /
    • 2014
  • RC shear wall sections which have irregular shapes such as T, ㄱ, ㄷ sections are typically used in low-rise buildings in Korea. Pushover analysis of building containing such members costs a lot of computation time and needs professional knowledge since it requires complicated modeling and, sometimes, fails to converge. In this study, a method using an equivalent column element for the shear wall is proposed. The equivalent column element consists of an elastic column, an inelastic rotational spring, and rigid beams. The inelastic properties of the rotational spring represent the nonlinear behavior of the shearwall and are obtained from the section analysis results and moment distribution for the member. The use of an axial force to compensate the difference in the axial deformation between the equivalent column element and the actual shear wall is also proposed. The proposed method is applied for the pushover analysis of a 5- story shear wall-frame building and the results are compared with ones using the fiber elements. The comparison shows that the inelastic behavior at the same drift was comparable. However, the performance points estimated using the pushover curves showed some deviations, which seem to be caused by the differences of estimated yield point and damping ratios.

A Study on the Response Modification Factor for a 5-Story Reinforced Concrete IMRF (5층 철근콘크리트 중간모멘트골조의 반응수정계수에 관한 연구)

  • Kang, Suk-Bong;Lim, Byeong-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.13-21
    • /
    • 2012
  • In this study, the response modification factor for a RC IMRF is evaluated via pushover analysis, where 5-story structures were designed in accordance with KBC2009. The bending moment-curvature relationship for beams and columns was identified with a fiber model, and the bending moment-rotation relationship for beam-column joints was calculated using a simple and unified joint shear behavior model and the moment equilibrium relationship for the joint. The results of the pushover analysis showed that the strength of the structure was overestimated with negligence of the inelastic shear behavior of the beam-column joint, and that the average response modification factor for category C was 7.78 and the factor for category D was 3.64.