• Title/Summary/Keyword: push-out tests

Search Result 140, Processing Time 0.035 seconds

Push-out tests and bond strength of rectangular CFST columns

  • Qu, Xiushu;Chen, Zhihua;Nethercot, David A.;Gardner, Leroy;Theofanous, Marios
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.21-41
    • /
    • 2015
  • Push-out tests have been conducted on 18 rectangular concrete-filled steel tubular (CFST) columns with the aim of studying the bond behaviour between the steel tube and the concrete infill. The obtained load-slip response and the distribution of the interface bond stress along the member length and around the cross-section for various load levels, as derived from measured axial strain gradients in the steel tube, are reported. Concrete compressive strength, interface length, cross-sectional dimensions and different interface conditions were varied to assess their effect on the ultimate bond stress. The test results indicate that lubricating the steel-concrete interface always had a significant adverse effect on the interface bond strength. Among the other variables considered, concrete compressive strength and cross-section size were found to have a pronounced effect on the bond strength of non-lubricated specimens for the range of cross-section geometries considered, which is not reflected in the European structural design code for composite structures, EN 1994-1-1 (2004). Finally, based on nonlinear regression of the test data generated in the present study, supplemented by additional data obtained from the literature, an empirical equation has been proposed for predicting the average ultimate bond strength for SHS and RHS filled with normal strength concrete.

Push-out tests on demountable high-strength friction-grip bolt shear connectors in steel-precast UHPC composite beams for accelerated bridge construction

  • Haibo, Jiang;Haozhen, Fang;Jinpeng, Wu;Zhuangcheng, Fang;Shu, Fang;Gongfa, Chen
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.797-818
    • /
    • 2022
  • Steel-precast ultra-high-performance concrete (UHPC) composite beams with demountable high-strength friction-grip bolt (HSFGB) shear connectors can be used for accelerated bridge construction (ABC) and achieve excellent structural performance, which is expected to be dismantled and recycled at the end of the service life. However, no investigation focuses on the demountability and reusability of such composite beams, as well as the installation difficulties during construction. To address this issue, this study conducted twelve push-out tests to investigate the effects of assembly condition, bolt grade, bolt-hole clearance, infilling grout and pretension on the crack pattern, failure mode, load-slip/uplift relationship, and the structural performance in terms of ultimate shear strength, friction resistance, shear stiffness and slip capacity. The experimental results demonstrated that the presented composite beams exhibited favorable demountability and reusability, in which no significant reduction in strength (less than 3%) and stiffness (less than 5%), but a slight improvement in ductility was observed for the reassembled specimens. Employing oversized preformed holes could ease the fabrication and installation process, yet led to a considerable degradation in both strength and stiffness. With filling the oversized holes with grout, an effective enhancement of the strength and stiffness can be achieved, while causing a difficulty in the demounting of shear connectors. On the basis of the experimental results, more accurate formulations, which considered the effect of bolt-hole clearance, were proposed to predict the shear strength as well as the load-slip relationship of HSFGBs in steel-precast UHPC composite beams.

The effect of different adhesive system applications on push-out bond strengths of glass fiber posts

  • Kivanc, Bagdagul Helvacioglu;Arisu, Hacer Deniz;Uctasli, Mine Betul;Okay, Tufan Can
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.305-311
    • /
    • 2013
  • PURPOSE. Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts. MATERIALS AND METHODS. The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (${\alpha}$=.05). RESULTS. Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group. CONCLUSION. Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes.

Shear resistance characteristic and ductility of Y-type perfobond rib shear connector

  • Kim, Sang-Hyo;Park, Se-Jun;Heo, Won-Ho;Jung, Chi-Young
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.497-517
    • /
    • 2015
  • This study evaluates behavior of the Y-type perfobond rib shear connector proposed by Kim et al. (2013). In addition, an empirical shear resistance formula is developed based on push-out tests. Various types of the proposed Y-type perfobond rib shear connectors are examined to evaluate the effects of design variables such as concrete strength, number of transverse rebars, and thickness of rib. It is verified that higher concrete strength increases shear resistance but decreases ductility. Placing transverse rebars significantly increases both the shear resistance and ductility. As the thickness of the ribs increases, the shear resistance increases but the ductility decreases. The experimental results indicate that a Y-type perfobond rib shear connector has higher shear resistance and ductility than the conventional stud shear connector. The effects of the end bearing resistance, resistance by transverse rebars, concrete dowel resistance by holes, and concrete dowel resistance by Y-shape ribs on the shear resistance are estimated empirically based on the push-out test results and the additional push-out test results by Kim et al. (2013). An empirical shear resistance formula is suggested to estimate the shear resistance of a Y-type perfobond shear connector for design purposes. The newly developed shear resistance formula is in reasonable agreement with the experimental results because the average ratio of measured shear resistance to estimated shear resistance is 1.024.

Shear Capacity of Corrugated rib Shear Connector (파형전단연결재의 전단저항 성능)

  • Ahn, Jin-Hee;Choi, Kyu-Tae;Kim, Sung-Hyun;Kim, Sang-Hyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.375-381
    • /
    • 2008
  • This paper deals with the shear capacity of corrugated rib as the shear connector in composite structures. Corrugated rib is modified as perfobond rib shear connector type to evaluate the shear capacity. A total 12 push-out specimens with stud, perfobond rib, and corrugated rib connector were fabricated. Then, the influences of hole-crossing bars, concrete dowel, depth of corrugated panel and height of rib on the shear capacity were evaluated experimentally. As the results of these tests, the failure mechanisms of corrugated rib and perfobond rib specimens were associated with the bearing failure of the concrete slabs, but the failure of weld zone did not occur. The shear capacity of corrugated rib specimens improved as high to 96% compared to the perfobond rib shear connectors. Also, the hole-crossing bars were effective on the improvement of concrete dowel action, and consequently, shear capacity increased by 48%. It was also proven that the increment of the depth of corrugated panel and the height of rib increased the concrete bearing resistance, therefore increasing the shear capacity.

Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams

  • Han, Qing-Hua;Wang, Yi-Hong;Xu, Jie;Xing, Ying
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.353-368
    • /
    • 2016
  • This paper extends our recent work on the fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete (RRFC) composite beams. A series of 16 fatigue push-out tests were conducted using a hydraulic servo testing machine. Three different recycled tyre rubber contents of concrete, 0%, 5% and 10%, were adopted as main variable parameters. Stress amplitudes and the diameters of studs were also taken into consideration in the tests. The results show that the fatigue lives of studs in 5% and 10% RRFC were 1.6 and 2.0 times greater of those in normal concrete, respectively. At the same time, the ultimate residual slips' values of stud increased in RRFC to highlight its better ductility. The average ultimate residual slip value of the studs was found to be equal to a quarter of studs' diameter. It had also been proved that stress amplitude was inversely proportional to the fatigue life of studs. Moreover, the fatigue lives of studs with large diameter were slightly shorter than those of smaller ones and using larger ones had the risk of tearing off the base metal. Finally, the comparison between test results and three national codes was discussed.

Effect of different adhesive systems and post surface treatments on the push-out bond strengths of fiber-reinforced post (다양한 접착 시스템 및 포스트의 표면 처리가 섬유 강화 포스트의 접착 강도에 미치는 영향)

  • Kim, Min-Woo;Ahn, Jin-Hee;Kim, Lee-Kyoung;Shim, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.218-225
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate the push-out bond strength of glass-fiber post cemented with different adhesive systems and surface treatments. Materials and methods: 160 tooth samples made from 48 human maxillary single-rooted teeth with similar root length were divided into 4 groups according to the adhesive system (no adhesive, Adper Single Bond 2, Clearfil SE Bond, Clearfil S3). Each group had 4 subgroups according to the post surface treatment methods (no treatment, sandblast, silane, sandblast and silane). Posts (Parapost Fiber White) were cemented with Rely X Unicem. The teeth were sectioned perpendicular to their long axis into 1-mm thick sections. The push-out tests was performed at a speed of 0.5 mm/min. The results were evaluated by 2-way ANOVA, 1-way ANOVA and multiple comparison procedures (Tukey test) (${\alpha}=0.05$). Results: Tukey test showed that the adhesive system significantly influenced the push-out strength. The Clearfil SE Bond group showed the highest value. Post surface treatments showed no significant effect. Conclusion: Bond strength of glass-fiber post cemented with self-adhesive resin cement using Clearfil SE Bond showed significantly higher values compared to other adhesive systems.

A Study on the Strength of Stud Shear Connectors in High Strength Concrete Composite Structures. (고강도 콘크리트 합성구조의 스터드 쉬어콘넥더 내력에 관한 연구)

  • 박복만
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.3
    • /
    • pp.23-30
    • /
    • 1986
  • This study summarizes the results of tests on 18 two-slab push out specimens. The main purpose of tile survey was to evaluate the capacity and behavior of stud shear connectors embedded in high strength normal concrete (F$\sub$c/=260~390kg/$\textrm{cm}^2$). The normal concrete was made with crushed stones and natural sand near the Han River. Two different diameters (ø19mm, ø16 mm) of stud shear connectors were used for push out specimens. The following conclusions were drawn from this study. 1) The shear strength of stud connectors embedded in high strength concrete (F$\sub$c/=260~390kg/$\textrm{cm}^2$) was influenced by tensile stress of the stud shear connectors. The following empirical function described the test results: q$\sub$u/=0.5A$\sub$s/√F$\sub$c/E$\sub$c/$\leq$0.7A$\sub$u/F$\sub$u/ 2) The maximum load in this study was reached at slips varying from 2.5~6mm.

  • PDF

Shear Strength of Stud Shear Connectors in Precast Concrete Deck using Lightweight Concrete (경량콘크리트를 사용한 프리캐스트 바닥판에서 스터드 전단열결재의 전단강도)

  • Cho, Sun-Kyu;Youn, Seok-Goo;Lee, Jong-Min;Kim, Su-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.414-417
    • /
    • 2006
  • In order to evaluate the shear strength of stud connectors in composite bridges using lightweight concrete decks, static push-out tests were performed. Sixteen push-out specimens were tested during this investigation. The test program consisted of two groups according to deck type, one is cast-in-place(CIP) concrete deck, the other is precast concrete deck. The experimental parameters were concrete compressive strength and bedding layer thickness. Based on the experimental results, the ultimate shear strength and the stiffness of shear connectors in lightweight concrete decks are assessed.

  • PDF

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.