Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.6.797

Push-out tests on demountable high-strength friction-grip bolt shear connectors in steel-precast UHPC composite beams for accelerated bridge construction  

Haibo, Jiang (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center)
Haozhen, Fang (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center)
Jinpeng, Wu (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center)
Zhuangcheng, Fang (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center)
Shu, Fang (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center)
Gongfa, Chen (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center)
Publication Information
Steel and Composite Structures / v.45, no.6, 2022 , pp. 797-818 More about this Journal
Abstract
Steel-precast ultra-high-performance concrete (UHPC) composite beams with demountable high-strength friction-grip bolt (HSFGB) shear connectors can be used for accelerated bridge construction (ABC) and achieve excellent structural performance, which is expected to be dismantled and recycled at the end of the service life. However, no investigation focuses on the demountability and reusability of such composite beams, as well as the installation difficulties during construction. To address this issue, this study conducted twelve push-out tests to investigate the effects of assembly condition, bolt grade, bolt-hole clearance, infilling grout and pretension on the crack pattern, failure mode, load-slip/uplift relationship, and the structural performance in terms of ultimate shear strength, friction resistance, shear stiffness and slip capacity. The experimental results demonstrated that the presented composite beams exhibited favorable demountability and reusability, in which no significant reduction in strength (less than 3%) and stiffness (less than 5%), but a slight improvement in ductility was observed for the reassembled specimens. Employing oversized preformed holes could ease the fabrication and installation process, yet led to a considerable degradation in both strength and stiffness. With filling the oversized holes with grout, an effective enhancement of the strength and stiffness can be achieved, while causing a difficulty in the demounting of shear connectors. On the basis of the experimental results, more accurate formulations, which considered the effect of bolt-hole clearance, were proposed to predict the shear strength as well as the load-slip relationship of HSFGBs in steel-precast UHPC composite beams.
Keywords
demountable; high-strength friction-grip bolt; push-out test; shear connector; steel-UHPC composite beam;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Buttry, K. (1965), Behavior of Stud Shear Connectors in Lightweight and Normal-Weight Concrete, Report No. 68-6; Missouri Cooperative Highway Research Program, Missouri State Highway Department and University of Missouri-Columbia, Missouri, USA
2 Cao, J.H., Shao, X.D., Deng, L. and Gan, Y.D. (2017), "Static and fatigue behavior of short-headed studs embedded in a thin ultrahigh-performance concrete layer", J. Bridge Eng., 22(5), 4017005. https://doi.org/10.1061/(ASCE)BE.1943-592.0001031.   DOI
3 Chen, B.C., Liu, A.R. Zhang, J.P. Zhang, F. and Bradford, M.A. (2022), "Behavior of T-shaped embedded-nut bolted shear connectors in prefabricated steel-concrete composite beams", Eng. Struct., 272, 114983. https://doi.org/10.1016/j.engstruct.2022.114983.   DOI
4 Chen, Y.T., Zhao, Y., West, J.S. and Walbridge, S. (2014), "Behaviour of steel-precast composite girders with through-bolt shear connectors under static loading", J. Constr. Steel Res., 103, 168-178. https://doi.org/10.1016/j.jcsr.2014.09.001.   DOI
5 CSA S6-14 (2014), Canadian Highway Bridge Design Code, Canadian Standards Association (CSA), Mississauga, Canada.
6 Denisiewicz, A. and Kuczma, M. (2015), "Two-scale modelling of reactive powder concrete. Part III: Experimental tests and validation", Eng. Trans., 63, 55-76.
7 Dieng, L., Marchand, P., Gomes, F., Tessier, C. and Toutlemonde, F. (2013), "Use of UHPFRC overlay to reduce stresses in orthotropic steel decks", J. Constr. Steel Res., 89, 30-41. https://doi.org/10.1016/j.jcsr.2013.06.006.   DOI
8 Eurocode 3 (2005), Design of Steel Structures. Part 1-8: Design of Joints, European Committee for Standardization; Brussels, Belgium.
9 Eurocode 4 (2004), Design of Composite Steel and Concrete Structure, Part 2: General rules for bridge, European Committee for Standardization; Brussels, Belgium.
10 Fang, S., Li, L.J., Lin, L.H., Wang, H.L. Fang, Z.C. Li, Z.W. Xiong, Z. and Liu, F. (2021), "FRP interlocking multi-spiral reinforced square concrete columns: A promising compression application for marine engineering", Eng. Struct., 244, 112733. https://doi.org/10.1016/j.engstruct.2021.112733.   DOI
11 Fang, Z.C., Fang, H.Z., Huang, J.X., Jiang, H.B. and Chen, G.F. (2022a), "Static behavior of grouped stud shear connectors in steel-precast UHPC composite structures containing thin full-depth slabs", Eng. Struct., 252, 113484. https://doi.org/10.1016/j.engstruct.2021.113484.   DOI
12 Fang, Z.C., Liang, W.B., Fang, H.Z., Jiang, H.B. and Wang, S.D. (2021b), "Experimental investigation on shear behavior of high-strength friction-grip bolt shear connectors in steel-precast UHPC composite structures subjected to static loading", Eng. Struct., 244, 112777. https://doi.org/10.1016/j.engstruct.2021.112777.   DOI
13 Fang, Z.C., Fang, H.Z., Li, P.J., Jiang, H.B. and Chen, G.F. (2022b), "Interfacial shear and flexural performances of steel-precast UHPC composite beams: Full-depth slabs with studs vs. demountable slabs with bolts", Eng. Struct., 260, 114230. https://doi.org/10.1016/j.engstruct.2022.114230.   DOI
14 Fang, Z.C., Jiang, H.B., Chen, G.F., Dong, X.T. and Shao, T.F. (2020), "Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams", Steel Compos. Struct., 34(6), 837-854. https://doi.org/10.12989/scs.2020.34.6.837.   DOI
15 Fang, Z.C., Jiang, H.B., Xiao, J., Dong, X.T. and Shao, T.F. (2021a), "Shear performance of UHPC-filled pocket connection between precast UHPC girders and full-depth precast concrete slabs", Structures, 29, 328-338. https://doi.org/10.1016/j.istruc.2020.11.038.   DOI
16 GB 50017-2017 (2017), Standard for design of steel structures, Minster of Housing and Urban-Rural development of the People's Republic of China, China Architecture & Building Press; Beijing, China [In Chinese]
17 GB 50917-2013 (2013), Code for Design of Steel Concrete Composite Bridge, Minster of Housing and Urban-Rural development of the People's Republic of China, China Planning Press; Beijing, China.
18 Graybeal, B.A. (2007), "Compressive behavior of ultra-high-performance fiber-reinforced concrete", ACI Mater. J., 2(104), 146-152. https://orcid.org/0000-0002-3694-1369.
19 He, S.H., Fang, Z. and Mosallam, A.S. (2017), "Push-out tests for perfobond strip connectors with UHPC grout in the joints of steel-concrete hybrid bridge girders", Eng. Struct., 135(15), 177-190. https://doi.org/10.1016/j.engstruct.2017.01.008.   DOI
20 Graybeal, B.A. (2009), Structural Behavior of a Prototype Ultra-High-Performance Concrete Pi-Girder, Report No. FHWA-HRT-10-027; McLean, VA. Federal Highway Administration, WASHINGTON, DC 20590, USA
21 He, S.H., Li, Q.F. Yang, G. Zhou, X. and Mosallam, A.S. (2022), "Experimental study on flexural performance of HSS-UHPC composite beams with perfobondstrip connectors", J. Struct. Eng., 148(6), 04022064. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003366.   DOI
22 Hu, Y.Q., Meloni, M., Cheng, Z., Wang, J.Q. and Xiu, H.L. (2020), "Flexural performance of steel-UHPC composite beams with shear pockets", Structures, 27, 570-582. https://doi.org/10.1016/j.istruc.2020.05.039.   DOI
23 Johnson, R. and May, I. (1975), "Partial-interaction design of composite beams", J. Struct. Eng., 8(53), 305-311.
24 JSCE (2017), Standard Specifications for Steel and Composite Structures, Japan Society of Civil Engineers (JSCE); Tokyo, Japan
25 Kozma, A., Odenbreita, C., Brauna, M.V., Veljkovicb, M. and Nijghb, M.P. (2019), "Push-out tests on demountable shear connectors of steel-concrete composite structures", Structures, 21, 45-54. https://doi.org/10.1016/j.istruc.2019.05.011   DOI
26 Kwon, G., Engelhardt, M.D. and Klingner, R.E. (2010), "Behavior of post-installed shear connectors under static and fatigue loading", Steel Construction, 66(4), 532-541. https://doi.org/10.1016/j.jcsr.2009.09.012.   DOI
27 Marshall, W.T., Nelson, H.M. and Banerjee, H.K. (1971), "An experimental study of the use of high strength friction-grip bolts as shear connectors in composite beams", Struct. Eng., 49(4), 171-178. http://worldcat.org/issn/14665123.
28 Liu, X.P., Bradford, M.A. and Ataei, A. (2017), "Flexural performance of innovative sustainable composite steel-concrete beams", Eng. Struct., 130(1), 282-296. https://doi.org/10.1016/j.engstruct.2016.10.009.   DOI
29 Liu, X.P., Bradford, M.A. and Lee, M.S.S. (2015), "Behavior of high-strength friction-grip bolted shear connectors in sustainable composite beams", J. Struct. Eng., 141(6), 4014149. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001090.   DOI
30 Liu, X.P., Bradford, M.A., Chen, Q.J. and Ban, H. (2016), "Finite element modelling of steel-concrete composite beams with high-strength friction-grip bolt shear connectors", Finite Elem. Anal. Des., 108, 54-56. https://doi.org/10.1016/j.finel.2015.09.004.   DOI
31 Ollgaard, J., Slutter, R. and Fisher, J. (1971), "Shear strength of stub connectors in lightweight and normal-weight concrete", AISC Engineering Journal, 8(2), 55-66. https://preserve.lib.lehigh.edu/islandora/object/preserve%3Abp3378933.
32 Pan, W.H., Fan, J.S., Nie, J.G., Hu, J.H. and Cui, J.F. (2016), "Experimental study on tensile behavior of wet joints in a prefabricated composite deck system composed of orthotropic steel deck and ultrathin reactive-powder concrete layer", J. Bridge Eng., 21(10), 4016064. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000935.   DOI
33 Pavlovic, M. and Veljkovic, M. (2017), "FE validation of push-out tests using bolts as shear connectors", Steel Construct., 10(2), 135-144. https://doi.org/10.1002/stco.201710017.   DOI
34 Qi, J.N., Wang, J.Q., Li, M. and Chen, L.L. (2017), "Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation", Steel Compos. Struct., 25(1), 79-92. https://doi.org/10.12989/scs.2017.25.1.079.   DOI
35 Pavlovic, M., Markovic, Z., Veljkovic, M. and Bucfevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Constr. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.   DOI
36 Polus, L. (2021), An Analysis of Load Bearing Capacity and Stiffness of Aluminium-Concrete Composite Elements Subjected to Bending, Ph.D. Dissertation, Poznan University of Technology, Poznan.
37 Polus, L. and Szumigala, M. (2019), "An experimental and numerical study of aluminium-concrete joints and composite beams", Arch. Civ. Mech., 19(2), 375-390. https://doi.org/10.1016/j.acme.2018.11.007.   DOI
38 Suwaed, A.S.H. and Karavasilis, T.L. (2017), "Novel demountable shear connector for accelerated disassembly, repair, or replacement of precast steel-concrete composite bridges", J. Bridge Eng., 22(9), 4017052. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001080.   DOI
39 Szumigala, M., Chybinski, M. and Polus, L. (2021), "Composite beams with aluminium girders - a review", In: Gizejowski M.A. et al., editors. Modern Trends in Research on Steel, Aluminium and Composite Structures: Proceedings of the XIV International  Conference on Metal Structures (ICMS2021), Poznan, Poland, 16-18 June 2021. Routledge, Leiden, Netherlands, 249-255. https://doi.org/10.1201/9781003132134-30.   DOI
40 Tang, Y.C., Zhu, M., Chen, Z., Wu, C.J., Chen, B., Li, C. and Li, L.J. (2022), "Seismic performance evaluation of recycled aggregate concrete-filled steel tubular columns with field strain detected via a novel mark-free vision method", Structures, 37, 426-441. https://doi.org/10.1016/j.istruc.2021.12.055.   DOI
41 Wang, J.Y., Guo, J.Y., Jia, L.J., Chen, S.M. and Dong, Y. (2017), "Push-out tests of demountable headed stud shear connectors in steel-UHPC composite structures", Compos. Struct., 170, 69-79. https://doi.org/10.1016/j.compstruct.2017.03.004.   DOI
42 Tong, L.W., Chen, L.H., Wen, M. and Xu, C. (2020), "Static behavior of stud shear connectors in high-strength-steel-UHPC composite beams", Eng. Struct., 218, 110827. https://doi.org/10.1016/j.engstruct.2020.110827.   DOI
43 Wallaert, J.J. and Fisher, J.W. (1964), Shear Strength of High-Strength Bolts, Paper 1822, Fritz Laboratory Reports, Lehigh Univ., Bethlehem, P.A.
44 Wang, J.Q., Xu, Q.Z., Yao, Y.M., Qi, J.N. and Xiu, H.L. (2018), "Static behavior of grouped large headed stud-UHPC shear connectors in composite structures", Compos. Struct., 206, 202-214. https://doi.org/10.1016/j.compstruct.2018.08.038.   DOI
45 Xiong, Z., Mai, G.H., Qiao, S.H., He, S.H., Zhang, B.F., Wang, H.L., Zhou, K.T. and Li, L.J. (2022), "Fatigue bond behaviour between basalt fibre-reinforced polymer bars and seawater sea-sand concrete", Ocean Coast. Manage., 218, 106038. https://doi.org/10.1016/j.ocecoaman.2022.106038.   DOI
46 Xu, C., Sugiura, K., Wu, C. and Su, Q.T. (2012), "Parametrical static analysis on group studs with typical push-out tests", J. Constr. Steel Res., 72, 84-96. https://doi.org/10.1016/j.jcsr.2011.10.029.   DOI
47 Xue, D.Y., Liu, Y.Q., Yu, Z. and He, J. (2012), "Static behavior of multi-stud shear connectors for steel-concrete composite bridge", J. Constr. Steel Res., 74(8), 1-7. https://doi.org/10.1016/j.jcsr.2011.09.017.   DOI
48 Yang, F., Liu, Y.Q., Jiang, Z.B. and Xin, H.H. (2018), "Shear performance of a novel demountable steel-concrete bolted connector under static push-out tests", Eng. Struct., 160, 133-146. https://doi.org/10.1016/j.engstruct.2018.01.005.   DOI
49 Zhang, Y.J., Chen, B.C., Liu, A.R., Pi, Y.L., Zhang, J.P., Wang, Y. and Zhong, L.C. (2019), "Experimental study on shear behavior of high strength bolt connection in prefabricated steel-concrete composite beam", Compos. Part B-Eng., 159, 481-489. https://doi.org/10.1016/j.compositesb.2018.10.007.   DOI
50 Yang, T., Liu, S.Y., Qin, B.X. and Liu, Y.Q. (2020), "Experimental study on multi-bolt shear connectors of prefabricated steel-concrete composite beams", J. Constr. Steel Res., 173, 106260. https://doi.org/10.1016/j.jcsr.2020.106260.   DOI
51 Zhang, Y.J., Liu, A.R., Chen, B.C., Zhang, J.P., Pi, Y.L. and Bradford, M.A. (2020), "Experimental and numerical study of shear connection in composite beams of steel and steel-fibre reinforced concrete", Eng. Struct., 215, 110707. https://doi.org/10.1016/j.engstruct.2020.110707.   DOI
52 Zhu, J.S., Wang, Y.G., Yan, J.B. and Guo, X.Y. (2020), "Shear behaviour of steel-UHPC composite beams in waffle bridge deck", Compos. Struct., 234 111678. https://doi.org/10.1016/j.compstruct.2019.111678.   DOI
53 AASHTO (2014), AASHTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials, Washington, D.C., USA
54 Akhnoukh, A.K. and Buckhalter, C. (2021), "Ultra-high-performance concrete: Constituents, mechanical properties, applications and current challenges", Case Stud. Constr. Mater., 15, e00559. https://doi.org/10.1016/j.cscm.2021.e00559.   DOI
55 ASTM A370-14 (2014), Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, West Conshohocken, PA, USA
56 ASTM C109/C109M-16a (2016), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International, West Conshohocken, PA, USA
57 ASTM C469/C469M-14 (2014), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA
58 ASTM C1231/C1231M-15 (2015), Standard Practice for Use of Unbond Caps in Determination of Compressive Strength of Hardened Cylindrical Concrete specimens, ASTM International, West Conshohocken, PA, USA
59 ASTM C1437-15 (2015), Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, PA, USA
60 ASTM C29/C29M-16 (2016), Standard Test Method for Bulk Density and Voids in Aggregate, ASTM International, West Conshohocken, PA, USA
61 ASTM C496/C496M-11 (2011), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA, USA
62 ASTM F3125/F3125M-15a (2015), Standard Practice for High Strength Structural Bolts, Steel and Alloy Steel, Heat Treated, 120 ksi (830 MPa) and 150 ksi (1040 MPa) Minimum Tensile Strength, Inch and Metric Dimensions, ASTM International, West Conshohocken, PA, USA
63 Ataei, A., Bradford, M.A. and Liu, X. (2016), "Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors", Eng. Struct., 114(6), 1-13. https://doi.org/10.1016/j.engstruct.2015.10.041.   DOI
64 Ataei, A., Zeynalian, M. and Yazdi, Y. (2019), "Cyclic behaviour of bolted shear connectors in steel-concrete composite beams", Eng. Struct., 198, 109455. https://doi.org/10.1016/j.engstruct.2019.109455.   DOI
65 Bai, J.L., He, J., Li, C., Jin, S.S. and Yang, H. (2022), "Experimental investigation on the seismic performance of a novel damage-control replaceable RC beam-to-column joint", Eng. Struct., 267, 114692. https://doi.org/10.1016/j.engstruct.2022.114692.   DOI