• Title/Summary/Keyword: push-out tests

Search Result 140, Processing Time 0.031 seconds

Ground Ejection Tests to verify the Safe Separation of an Aircraft Mounted Store (항공기 장착 무장의 투하 안정성 검증을 위한 지상무장분리시험)

  • Lee, Jong-Hong;Choi, Seok-Min;Lee, Min-Hyoung;Lee, Chul;Jung, Jae-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.70-75
    • /
    • 2018
  • The mounted store on an aircraft shall be subjected to an ground separation test to verify that a safe separation has been made before it is actually installed to the aircraft. In this study, ground ejection test was conducted with dummy missile to verify the stability of the drop on the land. Bomb rack unit essential to testing ground ejection test, operate at high pressure and produce a significant ejection force to push the missile away from any large orifice. Bomb rack unit modified their bombe pressure and orifice diameter to photograph the drop movement of dummy missile with high-speed camera and to analyze their drop displacement and speed. It is considered useful to provide the initial data for the ejection force analysis on aircraft with actual flight and to carry out the ground separation tests of aircraft with future developments.

Experimental Study for Structural Behavior of Embed Plate into Concrete Subjected to Welding Heat Input (매입강판 용접열에 의한 고강도 콘크리트 접합부 구조성능 영향평가에 관한 실험적 연구)

  • Chung, Kyung Soo;Kim, Ki Myon;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.569-578
    • /
    • 2013
  • In a super-tall building construction, thick and large-sized embed plates are usually used to connect mega structural steel members to RC core wall or columns by welding a gusset plate on the face of the embed plate with T-shape. A large amount of heat input accumulated by weld passes causes the plates to expand or deform. In addition, the temperature of concrete around the plates also could be increased. Consequently, cracks and spalls occur on the concrete surface. In this study, the effect of weld heat on embed plates and 80MPa high strength concrete is investigated by considering weld position (2G and 3G position), edge distance, concrete curing time, etc. Measured temperature of the embed plates was compared with the transient thermal analysis results. Finally, push-out tests were performed to verify and compare the shear studs capacity of the embed plate with design requirement. Test result shows that the shear capacity of the plate is reduced by 14%-19% due to the weld heat effect and increased as the concrete curing time is longer.

Behavior of Stud Shear Connectors in Precast Deck using Lightweight Concrete (경량콘크리트를 사용한 프리캐스트 바닥판에서 스터드 전단연결재의 거동)

  • Cho, Sun Kyu;Lee, Jong Min;Youn, Seok Goo;Choi, Yun Wang
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.227-236
    • /
    • 2008
  • The kind of concrete generally used in steel concrete composite bridges is normal-weight concrete whose unit weight is ${2,300kg/m^{3}}$. However, using lightweight concrete in composite bridges diminishes the sectional forces due to the self-weight of concrete decks. As a result, this will make the bridge design more economical. The type of concrete deck that could be adopted in composite bridges using lightweight con crete may be classified into Cast-In-Place (C.I.P.) concrete deck and precast concrete deck. These two types of decks have some differences with respect to structural behavior and constructional method, and hence,structural behavior of stud shear connectors that connect a concrete deck to a steel girder is changed with the type of deck used. In this study, push-out tests were conducted to evaluate the characteristics of static behavior of the stud shear connectors with a precast deck using lightweight concrete. Also, additional precast deck specimens with bedding layer that had shear keys and devices for transverse confinement of the bedding layer for the prevention of cracks occurring in the bedding layer were tested. These cracks The efficiency of these devices was then evaluated.

Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders

  • He, Jun;Lin, Zhaofei;Liu, Yuqing;Xu, Xiaoqing;Xin, Haohui;Wang, Sihao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.553-568
    • /
    • 2020
  • Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, the equations for calculating the stress and deformation of simply supported composite girders considering the influence of connection's shear stiffness were derived under different loading conditions using classical linear partial-interaction theory. As the increasing of shear stiffness, the stress and deflection at the most unfavorable section under partial connected condition tend to be those under full connected condition, but the approaching speed decreases gradually. Finally, the connector's shear stiffness was recommended for fully connection in composite girders with different dimensions under different loading conditions. The findings from present study may provide a reference for the prediction of shear stiffness for headed studs and the elastic design of steel-concrete composite girder.

Evaluation of Shear Performance for CSB (Confined Socket Bolt) Shear Connector (CSB (Confined Socket Bolt) 전단연결재의 전단 성능 평가 )

  • Seung-Hyeon Hwang;Ju-Hyun Mun;Jong-Kook Hong;Jong-Cheol Jeon;Jae-Il Sim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.8-16
    • /
    • 2023
  • This study evaluated a shear capacity of confined socket-bolt (CSB) shear connector developed for utilizing cast in placed pile (CIP) as a permanent underground wall. The push-out tests were performed in the specimens with different CIP types, CSB shear connector types, L/d, and concrete compressive strengths of concrete pile, and with or without waterproofing at interfaces between CIP and underground wall. Test results showed that the specimens with a H-shaped pile were fractured in the CSB shear connector, while the fracture concentrated in the concrete part of the specimens with a reinforced concrete pile was alleviated as the compressive strength of the concrete pile increased, resulting in the severe fracture of CSB shear connector. The maximum shear capacities of the specimens with high strength bolts and reinforcing bars used as CSB shear connector were approximately 1.22 and 1.20 times higher than those of the specimens with a H-shaped pile, respectively, and 1.10 and 1.16 times higher than those of the specimens with a reinforced concrete pile, respectively. Meanwhile, the maximum shear capacity was not significantly affected by the embedding length of the CSB shear connector and overlapping length of reinforcing bar. The predicted shear capacities calculated from the KDS standards were lower than the measured values of all specimens tested in this study.

Application of ANFIS technique on performance of C and L shaped angle shear connectors

  • Sedghi, Yadollah;Zandi, Yousef;Shariati, Mahdi;Ahmadi, Ebrahim;Azar, Vahid Moghimi;Toghroli, Ali;Safa, Maryam;Mohamad, Edy Tonnizam;Khorami, Majid;Wakil, Karzan
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.335-340
    • /
    • 2018
  • The behavior of concrete slabs in composite beam with C and L shaped angle shear connectors has been studied in this paper. These two types of angle shear connectors' instalment have been commonly utilized. In this study, the finite element (FE) analysis and soft computing method have been used both to present the shear connectors' push out tests and providing data results used later in soft computing method. The current study has been performed to present the aforementioned shear connectors' behavior based on the variable factors aiming the study of diverse factors' effects on C and L shaped angle in shear connectors. ANFIS (Adaptive Neuro Fuzzy Inference System), has been manipulated in providing the effective parameters in shear strength forecasting by providing input-data comprising: height, length, thickness of shear connectors together with concrete strength and the respective slip of shear connectors. ANFIS has been also used to identify the predominant parameters influencing the shear strength forecast in C and L formed angle shear connectors.

A Study of Applicability of PDT(Pulse Discharge Technology) Pile to Kyung-Geon Rail Road and the bedding Construction of a new port in Busan (경전선 복선전철 및 부산신항 노반건설공사 중 PDT말뚝 적용성 연구)

  • Hur, Eok-Jun;Park, Jae-Myung;Yun, Su-Dong;Kim, Tae-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1203-1208
    • /
    • 2007
  • In the past decades, complain about ground vibration and noise induced by pile driving has been quickly increased. Because of that, auger drilled piling methods have frequently used specially in urban area. However, the present auger drilled piling methods induce inevitable ground disturbance as well as a certain degree of vibration and noise due to the final hammering. For these reasons, a new auger drilled piling method is required to be developed. This paper introduces PDT(Pulse Discharge Technology) piling method and presents the characteristics of bearing capacity. The PDT piling method is to install in-situ piles using electric power so called Pulse. The pile installed by PDT appears to be able to develop shaft and end bearing capacity efficiently. This paper introduces PDT(Pulse Discharge Technology) piling method, which is the 512nd new construction technology. The PDT piling method is to install in-situ piles using electrical power so called Pulse power. The pulse power is physical value that indicates the energy change per unit time(dE/dt). Since the pulse power is to push ground, using the pulse power is enable a hole to be expanded as well as the ground to be improved by compaction. Therefore, The pile installed by PDT appears to be able to develop shaft and end bearing capacity efficiently. In this study, couples of pile loading tests were carried out to figure out whether or not the PDT piling method is applicable to constructions like rail road facility. As a result, it was concluded that the PDT piling technique meet the requirements for such a rail road related construction.

  • PDF

Modeling of Friction Characteristic Between Concrete Pavement Slab and Subbase (콘크리트 포장 슬래브와 보조기층 간 마찰특성 모형화)

  • Lim, Jin-Sun;Son, Suk-Chul;Liu, Ju-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.211-218
    • /
    • 2010
  • Volume of concrete slab changes by temperature and moisture effects. At that time, tensile stress develops because the slab volume change is restrained by friction resistance between the slab and subbase, and then crack occurs occasionally. Accordingly, researchers have made efforts to figure out the friction characteristics between the slab and subbase by performing push-off tests. Lately, researches to analyze concrete pavement behavior by the friction characteristics have been performed by finite element method. In this study, The friction characteristics between the slab and subbase were investigated based on the friction test results for lean concrete, aggregate, and asphalt subase widely used in Korean concrete pavements. The energy method bilinearizing relation between nonlinear friction resistance and displacement were suggested. The friction test was modeled by 3-D finite element program, ABAQUS, and the model was verified by comparing the analyzed results to the test results. The bilinear model developed by the energy method was validated by comparing analysis results obtained by using the nonlinear and bilinear friction resistance displacement relation as input data. A typical Korean concrete pavement was modeled by ABAQUS and EverFE and analyzed results were compared to evaluate applicability of the bilinear model.

Bolted connectors with mechanical coupler embedded in concrete: Shear resistance under static load

  • Milicevic, Ivan;Milosavljevic, Branko;Pavlovic, Marko;Spremic, Milan
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.321-337
    • /
    • 2020
  • Contemporary design and construction of steel-concrete composite structures employs the use of prefabricated concrete elements and demountable shear connectors in order to reduce the construction time and costs and enable dismantling of elements for their potential reuse at the end of life of buildings. Bolted shear connector with mechanical coupler is presented in this paper. The connector is assembled from mechanical coupler and rebar anchor, embedded in concrete, and steel bolt, used for connecting steel to concrete members. The behaviour and ultimate resistance of bolted connector with mechanical coupler in wide and narrow members were analysed based on push-out tests and FE analyses conducted in Abaqus software, with focus on concrete edge breakout and bolt shear failure modes. The effect of concrete strength, concrete edge distance and diameter and strength of bolts on failure modes and shear resistance was analysed. It was demonstrated that premature failure by breakout of concrete edge occurs when connectors are located 100 mm or closer from the edge in low-strength and normal-strength reinforced concrete. Furthermore, the paper presents a relatively simple model for hand calculation of concrete edge breakout resistance when bolted connectors with mechanical coupler are used. The model is based on the modification of prediction model used for cast-in and post-installed anchors loaded parallel to the edge, by implementing equivalent influence length of connector with variable diameter. Good agreement with test and FE results was obtained, thus confirming the validity of the proposed method.

Assessment and Recommendation of Fatigue Design Codes for Stud Shear Connectors in Composite Bridge (강합성 교량 스터드 전단연결재의 피로 설계식 평가 및 제안)

  • Lee, Kyoung-Chan;Yoon, Ki-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.15-21
    • /
    • 2009
  • The design of the stud shear connector of a bridge structure is mostly controlled by the fatigue resistance not by the strength, if it is followed by AASHTO LRFD Bridge Design Specification. This fatigue design code in AASHTO LRFD is based on the research work done by Slutter and Fisher in 1966. These tests seemingly underestimated the fatigue resistance of connectors because of the inherent eccentricity of the one-face test setup which results additional tension forces to the stud. In addition, the stress ranges were not plotted in the log scale, because it was not known at that time that the fatigue resistance of the welded steel structures has a linear relationship of log scales of stress range and number of loading cycles. This study evaluates the test data produced by the Slutter and Fischer, and plot the data on the proper manner. The fatigue push-out test data produced recently by many other researches all around the world are gathered and analyzed, furthermore a design curve is recommended.