• Title/Summary/Keyword: push test

Search Result 391, Processing Time 0.027 seconds

Experimental investigation of shear connector behaviour in composite beams with metal decking

  • Qureshi, Jawed;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.475-494
    • /
    • 2020
  • Presented are experimental results from 24 full-scale push test specimens to study the behaviour of composite beams with trapezoidal profiled sheeting laid transverse to the beam axis. The tests use a single-sided horizontal push test setup and are divided into two series. First series contained shear loading only and the second had normal load besides shear load. Four parameters are studied: the effect of wire mesh position and number of its layers, placing a reinforcing bar at the bottom flange of the deck, normal load and its position, and shear stud layout. The results indicate that positioning mesh on top of the deck flange or 30 mm from top of the concrete slab does not affect the stud's strength and ductility. Thus, existing industry practice of locating the mesh at a nominal cover from top of the concrete slab and Eurocode 4 requirement of placing mesh 30 mm below the stud's head are both acceptable. Double mesh layer resulted in 17% increase in stud strength for push tests with single stud per rib. Placing a T16 bar at the bottom of the deck rib did not affect shear stud behaviour. The normal load resulted in 40% and 23% increase in stud strength for single and double studs per rib. Use of studs only in the middle three ribs out of five increased the strength by 23% compared to the layout with studs in first four ribs. Eurocode 4 and Johnson and Yuan equations predicted well the stud strength for single stud/rib tests without normal load, with estimations within 10% of the characteristic experimental load. These equations highly under-estimated the stud capacity, by about 40-50%, for tests with normal load. AISC 360-16 generally over-estimated the stud capacity, except for single stud/rib push tests with normal load. Nellinger equations precisely predicted the stud resistance for push tests with normal load, with ratio of experimental over predicted load as 0.99 and coefficient of variation of about 8%. But, Nellinger method over-estimated the stud capacity by about 20% in push tests with single studs without normal load.

The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material

  • Akbulut, Makbule Bilge;Bozkurt, Durmus Alperen;Terlemez, Arslan;Akman, Melek
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.5.1-5.9
    • /
    • 2019
  • Objectives: The aim of this in vitro study was to evaluate the push-out bond strength of a novel calcium silicate-based root repair material-BIOfactor MTA to root canal dentin in comparison with white MTA-Angelus (Angelus) and Biodentine (Septodont). Materials and Methods: The coronal parts of 12 central incisors were removed and the roots were embedded in acrylic resin blocks. Midroot dentin of each sample was horizontally sectioned into 1.1 mm slices and 3 slices were obtained from each root. Three canal-like standardized holes having 1 mm in diameter were created parallel to the root canal on each dentin slice with a diamond bur. The holes were filled with MTA-Angelus, Biodentine, or BIOfactor MTA. Wet gauze was placed over the specimens and samples were stored in an incubator at $37^{\circ}C$ for 7 days to allow complete setting. Then samples were subjected to the push-out test method using a universal test machine with the loading speed of 1 mm/min. Data was statistically analyzed using Friedman test and post hoc Wilcoxon signed rank test with Bonferroni correction. Results: There were no significant differences among the push-out bond strength values of MTA-Angelus, Biodentine, and BIOfactor MTA (p > 0.017). Most of the specimens exhibited cohesive failure in all groups, with the highest rate found in Biodentine group. Conclusions: Based on the results of this study, MTA-Angelus, Biodentine, and BIOfactor MTA showed similar resistances to the push-out testing.

Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis

  • Kim, Kun-Soo;Han, Oneil;Gombosuren, Munkhtulga;Kim, Sang-Hyo
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.53-67
    • /
    • 2019
  • This study presents finite element analysis (FEA) on a Y-type perfobond rib shear connection using Abaqus software. The performance of a shear connection is evaluated by conducting a push-out test. However, in practice, it is inefficient to verify the performance by conducting a push-out test with regard to all design variables pertaining to a shear connector. To overcome this problem, FEA is conducted on various shear connectors to accurately estimate the shear strength of the Y-type perfobond rib shear connection. Previous push-out test results for 14 typical push-out test specimens and those obtained through FEA are compared to analyze the shear behavior including consideration of the design variables. The results show that the developed finite element model successfully reflects the effects of changes in the design variables. In addition, using the developed FEA model, the shear resistance of a stubby Y-type perfobond rib shear connector is evaluated based on the concrete strength and transverse rebar size variables. Then, the existing shear resistance formula is upgraded based on the FEA results.

A Study on the Slip Test of Shear Connector in Fire (전단 연결재의 고온 성능 평가에 관한 연구)

  • Han, Sang-Hoon;Park, Won-Sup;Lee, Choul-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.48-51
    • /
    • 2008
  • Shear connector is the element which resist in the horizontal shear force between steel and concrete of composite members and the stud bolt is often used because of its constructional convenience and serviceability. Although the push-out test is the most common method to evaluate shear slip behaviour, it is suitable for only room temperature conditions. In this study, we investigated about shear force, temperature distribution and slip displacement of shear connector in high temperature through the modified push-out test with electronic furnace invented for steel part heating.

  • PDF

Comparison between a bulk-fill resin-based composite and three luting materials on the cementation of fiberglass-reinforced posts

  • Carlos Alberto Kenji Shimokawa ;Paula Mendes Acatauassu Carneiro ;Tamile Rocha da Silva Lobo;Roberto Ruggiero Braga ;Miriam Lacalle Turbino;Adriana Bona Matos
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.30.1-30.11
    • /
    • 2023
  • Objectives: This study verified the possibility of cementing fiberglass-reinforced posts using a flowable bulk-fill composite (BF), comparing its push-out bond strength and microhardness with these properties of 3 luting materials. Materials and Methods: Sixty endodontically treated bovine roots were used. Posts were cemented using conventional dual-cured cement (CC); self-adhesive cement (SA); dual-cured composite (RC); and BF. Push-out bond strength (n = 10) and microhardness (n = 5) tests were performed after 1 week and 4 months of storage. Two-way repeated measures analysis of variance (ANOVA), 1-way ANOVA, t-test, and Tukey post-hoc tests were applied for the push-out bond strength and microhardness results; and Pearson correlation test was applied to verify the correlation between push-out bond strength and microhardness results (α = 0.05). Results: BF presented higher push-out bond strength than CC and SA in the cervical third before aging (p < 0.01). No differences were found between push-out bond strength before and after aging for all the luting materials (p = 0.84). Regarding hardness, only SA presented higher values measured before than after aging (p < 0.01). RC and BF did not present 80% of the maximum hardness at the apical regions. A strong positive correlation was found between the luting materials' push-out bond strength and microhardness (p < 0.01, R2 = 0.7912). Conclusions: The BF presented comparable or higher push-out bond strength and microhardness than the luting materials, which indicates that it could be used for cementing resin posts in situations where adequate light curing is possible.

An Empirical Analysis of Push-Pull-Mooring Factors Affecting on Switching Intention to Over the Top(OTT) Services (Over The Top(OTT) 서비스 전환의도에 영향을 미치는 Push-Pull-Mooring 요인에 대한 실증적 분석)

  • Park, Hyun Sun;Kim, Sang Hyun
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.71-94
    • /
    • 2021
  • Purpose The purpose of this study is to verify impacts of factors, representing Push-Pull-Mooring(PPM) on switch intention to OTT(Over-The-Top) service in demand for content and to find relationship between factors through empirical analysis. Design/methodology/approach This study designed a research model by deriving factors affecting the intention to switch on OTT service based on the Push-Pull-Mooring framework and researches on OTT service. To test the hypothesis, a total of 357 responses were collected from individuals with experience in using OTT service and analyzed using SPSS26 and SmartPLS3.0. Findings According to the empirical analysis result, this study confirmed that the push, pull, and mooring factors proposed in this study had a significant effect on switching intention on OTT service. In addition, this study confirmed that both low switching cost and need for variety had a significant effect except for hypothesis H8.

현장 Single Well Push-Pull 실험을 통한 탈질산화반응 각 단계의 반응속도 측정

  • Yeong, Kim;Jin Hun, Kim;Bong Ho, Son;Seong Uk, Eo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.77-82
    • /
    • 2004
  • Quantifying rates of microbial processes under subsurface conditions is difficult, and is most commonly approximated by laboratory studies using aquifer materials. In this study a single-well, 'push-pull' test method is adapted for the in situ determination of denitrification rates in groundwater aquifers. The rates of stepwise reduction of nitrate to nitrite, nitrous oxide, and molecular nitrogen were determined by performing a series of push-pull tests at an experimental well field of Korea University. A single Transport Test, one Biostimulation Test, and four Activity Tests were conducted for this study. Transport tests are conducted to evaluate the mobility of solutes used in subsequent tests. These included bromide (a conservative tracer), fumarate (a carbon and/or source), and nitrate (an electron acceptor). At this site, extraction phase breakthrough curves for all solutes were similar, indicating apparent conservative transport of the solutes prior to biostimulation. Biostimulation tests were conducted to stimulate the activity of indigenous heterotrophic denitrifyinc microorganisms. Biostimulation was detected by the simultaneous production of carbon dioxide and nitrite after each injection. Activity tests were conducted to quantify rates of nitrate, nitrite, and nitrous oxide reduction. Estimated zero-order degradation rates decreased in the order nitrate '||'&'||'gt; nitrite '||'&'||'gt; nitrous oxide. The series of push-pull tests developed and field tested in this study should prove useful for conducting rapid, low-cost feasibi1ity assessments for in situ denitrification in nitrate-contaminated aquifers.

  • PDF

COMPARISON OF BOND STRENGTH OF A FIBER POST CEMENTED WITH VARIOUS RESIN CEMENTS (다양한 레진시멘트로 합착한 섬유포스트의 결합강도 비교)

  • Lee, Hyun-A;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.6
    • /
    • pp.499-506
    • /
    • 2008
  • The purpose of this study was to compare the push-out strength of a fiber post cemented with various resin cements. Newly extracted 36 human mandibular premolars which had single root canal were selected and their crown portions were removed. The root canal was instrumented using $PROTAPER^{TM}$ system and obturated using continuous wave technique. In each root, a 9-mm deep post space was prepared. #2 translucent fiber post (DT Light post, Bisco Inc., Schaumburg, IL, U.S.A.) was cemented using injection technique with Uni-dose needle tip (Bisco) and six different resin cements. The tested resin cements were Duo-Link (Bisco Inc., Schaumburg, IL, U.S.A.), Variolink II (Ivoclar-Vivadent AG, Schann, Liechtenstein), Panavia F (Kuraray Medical Inc., Okayama, Japan), Multilink Automix (Ivoclar-Vivadent AG, Schann, Liechtenstein), RelyX Unicem (3M ESPE Dental Products, St. Paul, MN, U.S.A.), and Maxcem (Kerr Co., CA, U.S.A.). After storage in distilled water for 24 hours, each root was transversally sectioned into approximately 1-mm thick sections. This procedure resulted in 6 serial sections per root. Push-out test wasperformed using a universal testing machine (EZ Test, Shimadzu Co.) with a crosshead speed of 1 mm/min. The data were analyzed with one-way ANOVA and Tukey HSD (p=0.05). The push-out strength of the groups which cemented fiber post with Panavia F and Multilink Automix were lower than those of the other groups. But, there were no statistically significant difference among groups at a probability level of 0.05.

Development of Push-pull Type Arc Welding Wire Feeder (아크 용접 와이어의 장거리 송급을 위한 Push-pull 방식의 와이어 송급장치 개발)

  • Yoon, Hyun-Jun;Hwang, In-Sung;Kim, Dong-Cheol;Kang, Moon-Jin;Choi, Ki-Gab
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.39-43
    • /
    • 2013
  • It is difficult to feed welding wire stably, when the distance between welding wire feeder and welding torch is far enough. In order to solve this problem, arranging a extension wire feeder between them could be one of useful methods. However, the welding wire could be twisted up in the extension cable between extension and terminal wire feeders in the case that RPM of extension wire feeding motor is higher than that of terminal motor. In this study, feeding problem of normal push-pull wire feeding system occurred at low welding current range less than 250A. In order to solve the problem, two new wire feeding systems of push-pull type were introduced. Welding wire feeding tests were preformed in the range of 150A to 400A with the developed push-pull feeding system. In addition, weldability test was performed at the welding current of 200A, 300A, and 400A. The welding wire twisting problem that was observed in the normal feeding system did not occur in the new push-pull wire feeding system.

Can Coupon Holding Duration and Message Framing Increase the Effect of Push Notifications on Mobile Coupon Redemption? Evidence from A Randomized Field Experiment

  • Soonki Hwang;Jai-Yeol Son;Sunju Park;Kil-Soo Suh
    • Asia pacific journal of information systems
    • /
    • v.33 no.3
    • /
    • pp.812-830
    • /
    • 2023
  • We propose a mobile coupon strategy designed to increase the effect of push notifications on redemption. The proposed strategy recommends that firms deliver mobile coupons with distant expiration dates and remind them through push notifications framed negatively once these expiration dates become imminent, rather than frequently sending coupons with near expiration dates. We test the effectiveness of the proposed strategy using data collected through a randomized field experiment. The findings indicate that push notifications enhance coupon redemption rates for coupons that are held longer by customers than those that are recently received. Additionally, we found that sending negatively framed push notification messages to remind customers of imminent coupon expiration dates further resulted in higher coupon redemption rates. The findings can be employed to offer useful guidance on how to effectively design mobile coupons for achieving higher redemption rates.