• Title/Summary/Keyword: purinergic

Search Result 38, Processing Time 0.028 seconds

Expression of the ATP-gated $P2X_7$ Receptor on M Cells and Its Modulating Role in the Mucosal Immune Environment

  • Kim, Sae-Hae;Lee, Ha-Yan;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • v.15 no.1
    • /
    • pp.44-49
    • /
    • 2015
  • Interactions between microbes and epithelial cells in the gastrointestinal tract are closely associated with regulation of intestinal mucosal immune responses. Recent studies have highlighted the modulation of mucosal immunity by microbe-derived molecules such as ATP and short-chain fatty acids. In this study, we undertook to characterize the expression of the ATP-gated $P2X_7$ receptor ($P2X_7R$) on M cells and its role in gastrointestinal mucosal immune regulation because it was poorly characterized in Peyer's patches, although purinergic signaling via $P2X_7R$ and luminal ATP have been considered to play an important role in the gastrointestinal tract. Here, we present the first report on the expression of $P2X_7R$ on M cells and characterize the role of $P2X_7R$ in immune enhancement by ATP or LL-37.

The Signaling Mechanism of Contraction Induced by ATP and UTP in Feline Esophageal Smooth Muscle Cells

  • Kwon, Tae Hoon;Jung, Hyunwoo;Cho, Eun Jeong;Jeong, Ji Hoon;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.616-623
    • /
    • 2015
  • P2 receptors are membrane-bound receptors for extracellular nucleotides such as ATP and UTP. P2 receptors have been classified as ligand-gated ion channels or P2X receptors and G protein-coupled P2Y receptors. Recently, purinergic signaling has begun to attract attention as a potential therapeutic target for a variety of diseases especially associated with gastroenterology. This study determined the ATP and UTP-induced receptor signaling mechanism in feline esophageal contraction. Contraction of dispersed feline esophageal smooth muscle cells was measured by scanning micrometry. Phosphorylation of $MLC_{20}$ was determined by western blot analysis. ATP and UTP elicited maximum esophageal contraction at 30 s and $10{\mu}M$ concentration. Contraction of dispersed cells treated with $10{\mu}M$ ATP was inhibited by nifedipine. However, contraction induced by $0.1{\mu}M$ ATP, $0.1{\mu}M$ UTP and $10{\mu}M$ UTP was decreased by U73122, chelerythrine, ML-9, PTX and $GDP{\beta}S$. Contraction induced by $0.1{\mu}M$ ATP and UTP was inhibited by $G{\alpha}i_3$ or $G{\alpha}q$ antibodies and by $PLC{\beta}_1$ or $PLC{\beta}_3$ antibodies. Phosphorylated $MLC_{20}$ was increased by ATP and UTP treatment. In conclusion, esophageal contraction induced by ATP and UTP was preferentially mediated by P2Y receptors coupled to $G{\alpha}i_3$ and $G{\alpha}q$ proteins, which activate $PLC{\beta}_1$ and $PLC{\beta}_3$. Subsequently, increased intracellular $Ca^{2+}$ and activated PKC triggered stimulation of MLC kinase and inhibition of MLC phosphatase. Finally, increased $pMLC_{20}$ generated esophageal contraction.

The Effects of Electroacupuncture on Mechanical Allodynia and Its Involvement with the Sympathetic Nervous System (Tail model의 기계적 이질통에 대한 전침 자극의 효과 및 교감신경계의 관여기전)

  • Lee, Hyung-suk;Min, Byung-il;Hwang, Byung-gil;Park, Dong-suk;Lee, Soon-geul
    • Journal of Acupuncture Research
    • /
    • v.20 no.1
    • /
    • pp.177-190
    • /
    • 2003
  • Objective : This study was intended to investigate the analgesic effects of electroacupuncture(EA) on mechanical allodynia according to the frequency and intensity of EA. Also to know if mechanical allodynia and the analgesic effects of EA is related to the sympathetci nervous system and/or the purinergic system. Methods : mechanical allodynia-induced rats were produced by resecting S1-S2 nerve. The zusanli(ST36) was used for acupoint and the rats were divided into 4 groups. Each group was given different stimuli[low frequency low intensity-EA(LFLI-EA), low frequency high intensity-EA(LFHI-EA), high frequency low intensity-EA(LFHI-EA), high frequency high intensity-EA(HFHI-EA)]. Futhermore, to make sympathectomy6-OHDA and phentolamine were administered intraperitonially and the concentration of norepinephrine(NE) were measured. As a ATP blocker, suramin was applied for this study. Results : Comparing to control group, each of the 4 groups(LFLI-EA, LFHI-EA, HFLI-EA, HFHI-EA) showed a significant reduction of response frequency of mechanical allodynia. LFHI-EA was more effective than that of LFLI-EA. The LFHI-EA group also had longer lasting effects from the stimulation than the other groups. Sympathectomy didn't show any reduction of response frequency of mechanical allodynia.(Each n=6, n=4). Nor did both sympathectomy and ATP block. The response frequency wasn't reduced by sympathectomy or by sympathectomy and ATP block, but was significantly reduced with LFHI-EA Conclusions : These results suggest that EA has a significant analgesic effect on mechanical allodynia which has no connection with NE and/or ATP.

  • PDF

P2X and P2Y Receptors Mediate Contraction Induced by Electrical Field Stimulation in Feline Esophageal Smooth Muscle

  • Cho, Young-Rae;Jang, Hyeon-Soon;Kim, Won;Park, Sun-Young;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.311-316
    • /
    • 2010
  • It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 ($10^{-7}{\sim}10^{-4}M$), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue ($10^{-6}{\sim}10^{-4}M$), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist ${\alpha}$,${\beta}$-methylene 5'-adenosine triphosphate (${\alpha}{\beta}MeATP$, $10^{-7}{\sim}10^{-5}M$) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5'-[${\beta}$-thio]diphosphate trilithium salt ($ADP{\beta}S$, $10^{-7}{\sim}10^{-5}M$) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,$N$-diethyl-D-${\beta}$,${\gamma}$- dibromomethylene 5'-triphosphate triammonium (ARL 67156, $10^{-4}M$) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.

Effect of Ca2+ on contractile responses induced by perivascular nerve stimulation in isolated coronary artery of pig

  • Hong, Yong-geun;Shim, Cheol-soo;Kim, Joo-heon
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.4
    • /
    • pp.702-709
    • /
    • 1999
  • The present study was performed to elucidate the effects of extracellular $Ca^{2+}$ on contractile responses in isolated porcine coronary artery ring using by perivascular nerve stimulation (PNS). Especially, the study was focused on the source of $Ca^{2+}$ on $P_{2X}$-purinoceptor mediated muscle contraction which one of $P_2$-purinoceptor subtypes. The following results can be drawn from these studies : 1. The phasic contractions induced by PNS were inhibited with muscarinic receptor antagonist, atropine ($10^{-6}M$). 2. The phasic contractions induced by PNS were significantly inhibited by sequential treatment with atropine and adrenergic neural blocker, guanethidine ($10^{-6}M$). 3. The phasic contractions induced by PNS were inhibited with $P_{2X}$-purinoceptor desensitization by repetitive application of $\alpha$,$\beta$-Me ATP ($10^{-4}M$). 4. The phasic contractions induced by PNS were so weakened in calcium-free medium. 5. The phasic contractions induced by PNS were inhibited with calcium channel blocker, verapamil ($10^{-6}{\sim}5{\times}10^{-6}M$). 6. The phasic contractions induced by PNS on pretreated with verapamil ($10^{-6}{\sim}5{\times}10^{-6}M$) were not changed by $\alpha$,$\beta$-Me ATP ($10^{-4}M$). These results demonstrate that the neurogenic phasic contractions induced by PNS are due to adrenergic-, cholinergic- and $P_{2X}$-purinergic receptors and the origin of $Ca^{2+}$ on $P_{2X}$-purinoceptor mediated muscle contraction is extracellular $Ca^{2+}$ through plasmalemmal $Ca^{2+}$ channels.

  • PDF

Functional characterization of $P_{2X}/P_{2Y}$ receptor in isolated swine renal artery

  • Kim, Joo-heon;Jeon, Je-cheol;Lee, Sang-kil;Lee, Su-jin;Lee, Younggeon;Won, Jinyoung;Kang, Jae seon;Hong, Yonggeun
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.4
    • /
    • pp.371-378
    • /
    • 2007
  • To understand the role of $PM_{2X}/P_{2Y}$ receptor in cortex region of kidney and renal artery, molecular and functional analysis of $PM_{2X}/P_{2Y}$ receptor by pharmacophysiological skill in conventional swine tissues were performed. In functional analysis of $P_{2Y}$ receptor for vascular relaxation, 2-methylthio adenosine triphosphate, a strong agonist of $P_{2Y}$ receptor, induced relaxation of noradrenaline (NA)-precontracted renal artery in a dose-dependent manner. Strikingly, relaxative effect of ATP, 2-msATP, agonists of $P_{2Y}$ receptor, abolished by treatment of reactive blue 2, a putative $P_{2Y}$ receptor antagonist. In contrast, no significant differences of gene encoding $PM_{2X}/P_{2Y}$ and protein expression in immortalized suprachiasmatic nucleus from brain, primary isolated vascular smooth muscle cells from renal artery of pigs and HEK293 from human embryonic kidney under with/without adenosine triphosphate were observed. Taken together, the relationship between molecular and functional characteristic of $PM_{2X}/P_{2Y}$ receptors in conventional pig should be considered that they are another important factor which regulate the kidney function in swine. Based on this study, we propose the purinergic receptor as well as adrenergic and cholinergic receptors is an essential component of the renal homeostasis.

Influence of 5′-(N′-Ethylcarboxanlido) Adenosine on Catecholarnine Secretion Evoked by Cholinergic Stimulation and Membrane Depolarization in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Oh, Hyeong-Geun;Woo, Seong-Chang
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.338-348
    • /
    • 2000
  • The present study was attempted to determine the effect of 5'-(N'-ethylcarboxamido) adenosine (NECA), which is an potent $A_2$-adenosine receptor agonist, on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. NECA (20 nM) perfused into the adrenal vein for 60 min produced a time-related inhibition in CA secretion evoked by ACh (5.32x10$^{-3}$ M), high $K^{+}$(5.6x10$^{-2}$ M), DMPP (10$^{-4}$ M for 2 min), McN-A-343 (10$^{-4}$ M for 2 min), cyclopiazonic acid (10$^{-5}$ M for 4 min) and Bay-K-8644 (10$^{-5}$ M for 4 min). Also, in the presence of $\beta$,${\gamma}$-methylene adenosine-5'-triphosphate (MATP), which is also known to be a selective $P_{2x}$-purinergic receptor agonist, showed a similar inhibition elf CA release evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid. However, in adrenal glands preloaded with 20$\mu$M NECA for 20 min under the presence of 20$\mu$M 3-isobutyl-1-methyl-xanthine (IBMX), an adenosine receptors antagonist, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were much recovered in comparison to the case of NECA-treatment only. Taken together, these results indicate that NECA causes the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization. This inhibitory effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells through the adenosine receptor stimulation. Therefore, it is suggested that the inhibitory mechanism of adenosine receptor stimulation may play a modulatory role in regulating CA secretion.n.n.

  • PDF

Action of P2X-purinoceptor on urinary bladder smooth muscle of pig (돼지 방광 평활근에 있어서 P2X-purinoceptor의 작용)

  • Park, Sang-eun;Hong, Yong-geun;Shim, Cheol-soo;Jeon, Seok-cheol;Kim, Joo-heon
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.1
    • /
    • pp.103-110
    • /
    • 1997
  • The experiments were carried out to elucidate the relationships between neurogenic effects of electrical transmural nerve stimulation and effect of adenosine 5'-triphosphate(ATP) to purinoceptor on the urinary bladder smooth muscle of pig. The results were as follows : 1. The contractile responses induced by electrical transmural nerve stimulation(10V or 20V, 0.5msec, 10sec) were the frequency(2~64Hz) dependent manner. 2. The contractile response induced by carbachol was responsed with a dose-dependent manner and the maximum contractility was $10^{-4}M$. 3. The contractile responses induced by ATP were increased in a dose-dependent manner ($10^{-5}{\sim}10^{-3}M$). 4. The contractile response induced by electrical transmural nerve stimulation(10V, 2~32Hz, 0.5msec, 10sec) was partially blocked by the treatment with atropine($10^{-5}M$), and was powerfully inhibited by 3 times of addition with ATP($10^{-5}M$). 5. The contractile response induced by electrical transmural nerve stimulation(10V, 2~32Hz, 0.5msec, 10sec) was partially blocked by the treatment with atropine($10^{-5}M$), and was completely blocked by the desensitization of the $P_{2X}$-purinoceptor using ${\alpha}$, ${\beta}$-methylene ATP($5{\times}10^{-5}M$). These results suggest that purinergic nerve was innervated, and ATP and acetylcholine was released by the electrical transmural nerve stimulation in urinary bladder smooth muscle of pig.

  • PDF

Extracellular ATP Induces Apoptotic Signaling in Human Monocyte Leukemic Cells, HL-60 and F-36P

  • Yoon, Mi-Jung;Lee, Hae-Jin;Kim, Jae-Hwan;Kim, Dong-Ku
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1032-1041
    • /
    • 2006
  • Extracellular adenosine 5'-triphosphate (ATP) affects the function of many tissues and cells. To confirm the biological activity of ATP on human myeloid leukemic cells, F-36P and HL-60, cells were treated with a variety of concentrations of ATP. The stimulation with extracellular ATP induced the arrest of cell proliferation and cell death. from the analysis of Annexin-V staining and caspase activity by flow cytometry. The Annexin-V positive cells in both cell lines were dramatically increased following ATP stimulation. The expression of P2 purinergic receptor genes was confirmed, such as P2X1, P2X4, P2X5, P2X7 and P2Y1, P2Y2, P2Y4, P2Y5, P2Y6, P2Y11 in both leukemic cell lines. Interestingly, ATP induced intracellular calcium flux in HL-60 cells but not in F-36P cells, as determined by Fluo-3 AM staining. Cell cycle analysis revealed that ATP treatment arrested both F-36P and HL-60 cells at G1/G0. Taken together, these data showed that extracellular ATP via P2 receptor genes was involved in the cell proliferation and survival in human myeloid leukemic cells, HL-60 and F-36P cells by the induction of apoptosis and control of cell cycle. Our data suggest that treatment with extracellular nucleotides may be a novel and powerful therapeutic avenue for myeloid leukemic disease.

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.