Browse > Article

Extracellular ATP Induces Apoptotic Signaling in Human Monocyte Leukemic Cells, HL-60 and F-36P  

Yoon, Mi-Jung (Cell and Gene Therapy Research Institute, Graduate School of Life Science and Biotechnology, Pochon CHA University, CHA General Hospital)
Lee, Hae-Jin (Cell and Gene Therapy Research Institute, Graduate School of Life Science and Biotechnology, Pochon CHA University, CHA General Hospital)
Kim, Jae-Hwan (Cell and Gene Therapy Research Institute, Graduate School of Life Science and Biotechnology, Pochon CHA University, CHA General Hospital)
Kim, Dong-Ku (Cell and Gene Therapy Research Institute, Graduate School of Life Science and Biotechnology, Pochon CHA University, CHA General Hospital)
Publication Information
Archives of Pharmacal Research / v.29, no.11, 2006 , pp. 1032-1041 More about this Journal
Abstract
Extracellular adenosine 5'-triphosphate (ATP) affects the function of many tissues and cells. To confirm the biological activity of ATP on human myeloid leukemic cells, F-36P and HL-60, cells were treated with a variety of concentrations of ATP. The stimulation with extracellular ATP induced the arrest of cell proliferation and cell death. from the analysis of Annexin-V staining and caspase activity by flow cytometry. The Annexin-V positive cells in both cell lines were dramatically increased following ATP stimulation. The expression of P2 purinergic receptor genes was confirmed, such as P2X1, P2X4, P2X5, P2X7 and P2Y1, P2Y2, P2Y4, P2Y5, P2Y6, P2Y11 in both leukemic cell lines. Interestingly, ATP induced intracellular calcium flux in HL-60 cells but not in F-36P cells, as determined by Fluo-3 AM staining. Cell cycle analysis revealed that ATP treatment arrested both F-36P and HL-60 cells at G1/G0. Taken together, these data showed that extracellular ATP via P2 receptor genes was involved in the cell proliferation and survival in human myeloid leukemic cells, HL-60 and F-36P cells by the induction of apoptosis and control of cell cycle. Our data suggest that treatment with extracellular nucleotides may be a novel and powerful therapeutic avenue for myeloid leukemic disease.
Keywords
Acute myeloid leukemia; MDS; ATP; Apoptosis; Calcium signaling; P2 receptor;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Adrian, K., Bernhard, M. K., Breitinger, H. G., and Ogilvie, A., Expression of purinergic receptors ionotropic P2X1-7 and metabotropic P2Y1-11 during myeloid differentiation of HL60 cells. Biochim. Biophys. Acta., 1492, 127-138 (2000)   DOI   ScienceOn
2 Barnard, E. A., Burnstock, G., and Webb, T. E., G proteincoupled receptors for ATP and other nucleotides: a new receptor family. Trends Pharmacol. Sci., 15, 67-70 (1994)   DOI   ScienceOn
3 Ferrari, D., La Sala, A., Chiozzi, P., Morelli, A., Falzoni, S., Girolomoni, G., Idzko, M., Dichmann, S., Norgauer, J., and Di Virgilio, F., The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB J., 14, 2466-2476 (2000)   DOI   ScienceOn
4 Fang, W. G., Pirnia, F., Bang, Y. J., Myers, C. E., and Trepel, J. B., P2-purinergic receptor agonists inhibit the growth of androgen-independent prostate carcinoma cells. J. Clin. Invest., 89, 191–196 (1992)   DOI
5 Steinberg, T. H., Newman, A. S., Swanson, J. A., and Silverstein, S. C., ATP^4$-permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J. Biol. Chem., 262, 8884- 8888 (1987)
6 Wakade, T. D., Palmer, K. C., Mccauley, R., Przywara, D. A., and Wakade, A. R., Adenosine-induced apoptosis in chick embryonic sympathetic neurons-a new physiological-role for adenosine. J. Physiol., 488, 123-138 (1995)   DOI
7 Lee, H., Suh, B. C., and Kim, K. T., Feedback regulation of ATPinduced Ca2+ signaling in HL-60 cells is mediated by protein kinase A- and C-mediated changes in capacitative $Ca^{2+}$ entry. J. Biol. Chem., 272, 21831-21838 (1997)   DOI   ScienceOn
8 Wilkinson, G. F., Purkiss, J. R., and Boarder, M. R., The regulation of aortic endothelial cells by purines and pyrimidines involves co-existing P2y-purinoceptors and nucleotide receptors linked to phospholipase C. Br. J. Pharmacol., 108, 689–693 (1993)   DOI   ScienceOn
9 Abbracchio, M. P. and Burnstock, G., Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol. Ther., 64, 445-475 (1994)   DOI   ScienceOn
10 Humphreys, B. D., Rice, J., Kertesy, S. B., and Dubyak, G. R., Stress-activated protein kinase/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor. J. Bio.l Chem., 275, 26792-26798 (2000)
11 Perregaux, D. and Gabel, C. A., Interleukin-1â maturation and release in response to ATP and nigericin: evidence that potassium depletion by these agents is a necessary and common feature of their activity. J. Biol. Chem., 269, 15195- 15203 (1994)
12 Harden, T. K., Boyer, J. L., and Nicholas, R. A., P2-purinergic receptors: subtype-associated signaling responses and structure. Annu. Rev. Pharmacol. Toxicol., 35, 541-579 (1995)   DOI   ScienceOn
13 Von kugelgen, I., and Wetter, A., Molecular Pharmacology of P2Y receptors. Naunyn Schmiedeberg's Arch. Pharmacol., 362, 310-323 (2000)   DOI   ScienceOn
14 Bean, B. P., Pharmacology and electrophysiology of ATPactivated ion channels. Trends Pharmacol. Sci., 13, 87-90 (1992)   DOI   ScienceOn
15 Garcia-Calvo, M., Peterson, E. P., Leiting, B., Ruel, R., Nicholson, D. W., and Thornberry, N. A., Inhibition of caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem., 273, 32608-32613 (1998)   DOI   ScienceOn
16 Jin, J., Dasari, V. R., Sistare, F. D., and Kunapuli, S. P., Distribution of P2Y receptor subtypes on haematopoietic cells. Br. J. Pharmacol., 123, 789-794 (1998)   DOI   ScienceOn
17 Chow, S. C., Kass, G. E., and Orrenius, S., Purines and their roles in apoptosis. Neuropharmacology, 36, 1149-1156 (1997)   DOI   ScienceOn
18 Dawicki, D. D., Rounds, S., Chatterjee, D., and Wyche, J. H., Extracellular ATP and adenosine cause apoptosis of pulmonary artery endothelial cell. Am. J. Physiol., 273, 485- 494 (1997)
19 Weisman, G. A., Lustig, K. D., Lane, E., Huang, N. N., Belzer, I., and Friedberg, I., Growth inhibition of transformed mouse fibroblasts by adenine nucleotides occurs via generation of extracellular adenosine. J. Biol. Chem., 263, 12367-12372 (1988)
20 Burnstock, G., Do some nerve cells release more than one transmitter? Neuro., 1, 239-248 (1976)
21 Gallagher, R., Collins, S., Trujillo, J., McCredie, K., Ahearn, M., Tsai, S., Metzgar, R., Aulakh, G., Ting, R., Ruscetti, F., and Gallo, R., Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood, 54, 713-733 (1979)
22 Holton, P., The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J. Physiol., 145, 494–504 (1959)   DOI
23 Kunapuli, S. P. and Daniel, J. L., P2 receptor subtypes in the cardiovascular system. Biochem. J., 336, 513-523 (1998)   DOI
24 Tanaka, Y., Yoshihara, K., Tsuyuki, M., and Kamiya, T., Apoptosis induced by adenosine in human leukemia HL-60 cells. Exp. Cell Res., 213, 242-252 (1994)   DOI   ScienceOn
25 Chiba, S., Takaku, F., Tange, T., Shibuya, K., Misawa, C., Sasaki, K., Miyagawa, K., Yazaki, Y., and Hirai, H., Establishment and erythroid differentiation of a cytokine-dependent human leukemic cell line F-36P: a parental line requiring granulocytemacrophage colony-stimulating factor or interleukin-3, and a subline requiring erythropoietin. Blood, 78, 2261-2268 (1991)
26 Furchgott, R. F. and Zawadzki, J. V., The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373–376 (1980)   DOI   ScienceOn
27 Ralevic, V. and Burnstock, G., Receptors for purines and pyrimidines. Pharmacol. Rev., 50, 413-492 (1998)
28 De Mey, J. G. and Vanhoutte, P. M., Role of the intima in cholinergic and purinergic relaxation of isolated canine femoral arteries. J. Physiol., 316, 347-355 (1981)   DOI
29 Di Virgilio, F., Chiozzi, P., Ferrari, D., Falzoni, S., Sanz, J. M., Morelli, A., Torboli, M., Bolognesi, G., and Baricordi, O. R., Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood, 97, 587-600 (2001)   DOI   ScienceOn
30 Rapaport, E., Experimental cancer therapy in mice by adenine nucleotides. Eur. J. Cancer Clin. Oncol., 24, 1491-1497 (1988)   DOI
31 Mutini, C., Falzoni, S., Ferrari, D., Chiozzi, P., Morelli, A., Baricordi, O. R., Ginetta, C., Ricciardi Castagnoli, P., and Di Virgilio, F., Mouse dendritic cells express the P2X7 purinergic receptor: characterization and possible participation in antigen presentation. J. Immunol., 163, 1958-1965 (1999)
32 Greenberg, S., Di Virgilio, F., Steinberg, T. H., and Silverstein, S. C., Extracellular nucleotides mediate $Ca^{2+}$ fluxes in J774 macrophages by two distinct mechanisms. J. Biol Chem., 263, 10337-10343 (1988)
33 Berchtold, S., Ogilvie, A. L., Bogdan, C., Muhl-Zurbes, P., Ogilvie, A., Schuler, G., and Steinkasserer, A., Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto-nucleotidases. FEBS Letter, 458, 424-428 (1999)   DOI   ScienceOn
34 Burnstock G. and Kennedy C., Is there a basis for distinguishing two types of P2-purinoreceptor? Gen. Pharmacol., 16, 433- 440 (1985)   DOI   ScienceOn
35 Kizaki, H., Suzuki, K., Tadakuma, T., and Ishimura, Y., Adenosine receptor-mediated accumulation of cyclic AMPinduced T-lymphocyte death through internucleosomal DNA cleavage. J. Biol. Chem., 265, 5280–5284 (1990)
36 Burnstock G., The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology, 36, 1127-1139 (1997)   DOI   ScienceOn