• Title/Summary/Keyword: punching-shear

Search Result 217, Processing Time 0.031 seconds

Thickness Effect of Double Layered Sheet on Burr Formation during Micro-Via Hole Punching Process (미세 비아홀 펀칭 공정 중 이종 재료 두께에 따른 버 생성)

  • 신승용;임성한;주병윤;오수익
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2004
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole qualify is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene terephthalate) one. In this paper we found the correlation between hole quality and process condition such as PET thickness and ceramic thickness. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

An Experimental Structural Performance of Steel Concrete Hybrid Deck for Bridge (교량용 강ㆍ콘크리트 합성 바닥판의 실험적 구조성능)

  • 정연주;정광회;구현본;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.524-529
    • /
    • 2003
  • This paper presents a experimental structural performance of steel-concrete hybrid bridge deck, which has studs to connect steel plate and concrete and T beam to improve structural performance, by steel plate shape, studs and load location. It proved that steel-concrete hybrid deck has a high structural performance and lightweight due to the efficient use of steel plate as a structural member, which has only used as formwork. In failure mode, few specimen failed at punching shear and many specimen at concrete crushing, therefore proved it has sufficient stability to punching shear which is the most frequent damage of bridge deck. Steel-concrete hybrid deck of plane steel plate has a high structural performance, and that of corrugated steel plate has a high reduction of weight.

  • PDF

Strategic Utilization of Fiber Reinforced UHSC in Slab-Column Connections

  • Yoon, Young-Soo;Lee, Joo-Ha;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.79-82
    • /
    • 2005
  • This study reports on the structural characteristics of slab-column connections using an ultra-high-strength-fiber-reinforced concrete from new and retrospective data. The parameters investigated were the ' puddling ' of ultra-high-strength-fiber-reinforced concrete and the use of high-strength concrete in the slab. The effects of these parameters on the punching shear capacity, negative moment cracking, and stiffness of the two-way slab specimens are investigated. Furthermore, the ACI Code (2002), the CSA Standard (1994), the BS Standard (1985) and the CEB-FIP Code (1990) predictions are compared to the experimental results obtained from some slab-column connections tested in this experiment and those tested by other investigators. The beneficial effects of the ultra-high-strength-fiber-reinforced concrete puddling and of the use of high-strength concrete are demonstrated. It is also concluded that the punching shear strength of slab-column connections is a function of the flexural reinforcement ratio.

  • PDF

Application of Concentrated FRP Bars to Enhance the Capacity of Two-Way Slabs (2방향 슬래브의 성능 향상을 위한 집중 배근된 FRP 바의 적용)

  • Lee, Joo-Ha;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.727-734
    • /
    • 2007
  • The influence of the differences in the physical and mechanical properties between fiber-reinforced polymer (FRP) and conventional steel, concentrated reinforcement in the immediate column region, as well as using steel fiber-reinforced concrete (SFRC) in the slab near the column faces, on the punching behavior of two-way slabs were investigated. The punching shear capacity, stiffness, ductility, strain distribution, and crack control were investigated. Concentrating of the slab reinforcement and the use of SFRC in the slab enhanced the punching behavior of the slabs reinforced with glass fiber-reinforced polymer (GFRP) bars. In addition the test results of the slabs with concentrated reinforcement were compared with various code equations and the predictions proposed in the literature specifically for FRP-reinforced slabs. An appropriate method for determining the reinforcement ratio of slabs with a banded distribution was also investigated to allow predictions to properly reflect the benefit of the slab reinforcement concentration.

The Effect of Anchorage of Reinforcement in Slab-Column Connection (슬래브-기둥 접합부에서 전단보강체에 정창성능에 따른 영향)

  • Choi, Huyn-Ki;Kim, Jun-Seo;Lee, Moon-Sung;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.185-188
    • /
    • 2008
  • Flat plate system has structural weakness such as punching shear. Punching shear resistance can be increase by using a lager column section and effective depth, higer concrete compressive strength, and more flexural reinforcement ratio. But using a shear reinforcement is most economical, enable, workable solution in flat plate. The slab with thickness smaller than 250mm can not perform effectively due to insufficient development length of shear reinforcement in the slab. In case of proposed reinforcements, since the shear reinforcements were installed between the top bar and the bottom bar, shear elements generated slip failure before they reached yield. strength. effect of anchorage strength were effective anchorage length, concrete strength, diameter of shear element and anchorage detail. considering effect of slab thickness and concrete strength, formula of K factor propose in thin flat plate slab. by considering effect of anchorage length and concrete strength, strength of shear reinforcement will be computed correctly in thin flat plate slab.

  • PDF

Prediction of Failure Mode Under Static Loading in Long Span Bridge Deck Slabs by FEM (유한요소해석에 의한 장지간 바닥판의 정적파괴형태 예측)

  • Park, Woo Jin;Hwang, Hoon Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2012
  • An analytical model is presented to predict the static behavior of the long-span prestressed concrete bridge deck(the long-span PSC deck). The finite element analysis is performed and the results are compared with that of the previous experimental test. The load-deflection relationship curves by FEM are in good agreement with the results reported in the previous study. The failure mode of all test specimens is predicted by the punching shear in this study. It is also observed in the previous experimental test. The main objective of this paper is presenting supportive method to predict static behavior of the long-span PSC deck slab. It is not simulating the punching shear behavior graphically.

Shear Strength Model for Slab-Column Connections (슬래브-기둥 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun;Kim, Hye-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.585-593
    • /
    • 2010
  • On the basis of the strain-based shear strength model developed in the previous study, a strength model was developed to predict the direct punching shear capacity and unbalanced moment-carrying capacity of interior and exterior slab-column connections. Since the connections are severely damaged by flexural cracking, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the compressive normal stress developed by the flexural moment, the shear strength of the compression zone was derived on the basis of the material failure criteria of concrete subjected to multiple stresses. As a result, shear capacity of the critical section was defined according to the degree of flexural damage. Since the exterior slab-column connections have unsymmertical critical sections, the unbalanced moment-carrying capacity was defined according to the direction of unbalanced moment. The proposed strength model was applied to existing test specimens. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods.

A Study on Unbalanced Moment of Flat Plate Exterior Connections (플랫 플레이트 외부접합부의 불균형모멘트에 관한연구)

  • Choi, Hyun-Ki;Beck, Seong-Woo;Back, Young-Soo;Jin, Eon-Sik;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1-4
    • /
    • 2008
  • Flat plate slab has been widely used in high rise building for its remarkable advantages. However, Flat plate structures under lateral load are susceptible to punching shear of the slab-column connection. Exterior slab-column connections has an unsymmetrical critical section for eccentric shear of which perimeter is less than that of interior connection, and hence, around the connection, unbalanced moment and eccentric shear are developed by both gravity load and lateral loads. Therefore, exterior connections is susceptible to punching shear failure. For that reason, this study compare ACI 318-05 to CEB-FIP MC 90 that is based on experiment results and existing data of flat plate exterior connections. This study shows that compared to CEB-FIP MC 90 is more exact about eccentric shear stress, unbalanced moment and Both of all are not suitable in large column aspect ratio. Considering gravity shear ratio, These are suitable but design condition only consider gravity shear ratio. So these should be considered differences from change of design condition

  • PDF

Estimation of Critical Height of Embankment to Mobilize Soil Arching in Pile-supported Embankment (말뚝지지성토지반 내 지반아칭이 발달할 수 있는 한계성토고의 평가)

  • Hong, Won-Pyo;Hong, Seong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.89-98
    • /
    • 2010
  • A method to design a critical height of embankments is presented so as to mobilize fully soil arching in pile-supported embankments. The behavior of the load transfer of embankment weights on pile cap beams was investigated by a series of model tests performed on pile-supported embankments with relatively wide space between cap beams. The model tests explained that the behavior of the load transfer depended very much on the height of embankments, because soil arching could be mobilized in pile-supported embankments only under enough high embankments. The measured vertical loads on cap beams coincided with the predicted ones estimated by the theoretical equations, which have been presented in the previous studies on the basis of load transfer mechanisms according to either the punching shear failure mode during low filling stage or the soil arching failure mode during high filling stage. The mechanism of the load transfer was shifted beyond a critical height of embankment from the punching shear mechanism to the soil arching mechanism. Therefore, in order to mobilize soil arching in pile-supported embankments, the embankments should be designed at least higher than the critical height. A theoretical equation to estimate the critical height could be derived by equalizing the vertical loads estimated by the load transfer mechanisms on the basis of both the punching shear and the soil arching. The derived theoretical equation could predict very well the experimental critical height of embankment.