• Title/Summary/Keyword: punching shear

Search Result 215, Processing Time 0.028 seconds

Numerical study on effect of integrity reinforcement on punching shear of flat plate

  • Ahsan, Raquib;Zahura, Fatema T.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Reinforced concrete flat plates consist of slabs supported directly on columns. The absence of beams makes these systems attractive due to advantages such as economical formwork, shorter construction time, less total building height with more clear space and architectural flexibility. Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. To analyze the flat plate behavior under punching shear, twelve finite element models of flat plate on a column with different parameters have been developed and verified with experimental results. The maximum range of variation of punching stress, obtained numerically, is within 10% of the experimental results. Additional finite element models have been developed to analyze the influence of integrity reinforcement, clear cover and column reinforcement. Variation of clear cover influences the punching capacity of flat plate. Proposed finite element model can be a substitute to mechanical model to understand the influence of clear cover. Variation of slab thickness along with column reinforcement has noteworthy impact on punching capacity. From the study it has been noted that integrity reinforcement can increase the punching capacity as much as 19 percent in terms of force and 101 percent in terms of deformation.

Modified models predicting punching capacity of edge column-slab joints considering different codes

  • Hamdy A. Elgohary;Mohamed A. El Zareef
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.363-374
    • /
    • 2024
  • Significant changes have been made to estimate the punching shear capacity for edge column-slab joints in the latest editions of most current codes. The revised equations account for axial forces as well as moments conveyed to columns from slabs, which have a substantial impact on the punching resistance of such joints. Many key design parameters, such as reinforcement-ratio, concrete strength, size-effect, and critical-section perimeter, were treated differently or even ignored in various code provisions. Consequently, wide ranges of predicted punching shear strength were detected by applying different code formulas. Therefore, it is essential to assess the various current Codes' design-equations. Because of the similarity in estimated outcomes, only the ACI, EC, and SNiP are used in this study to cover a wide range of estimation ranges from highly conservative to unconservative. This paper is devoted to analyzing the techniques in these code provisions, comparing the estimated punching resistance with available experimental data, and finally developing efficient models predicting the punching capacity of edge column-slab connections. 63 samples from past investigations were chosen for validation. To appropriately predict the punching shear, newly updated equations for ACI and SNiP are provided based on nonlinear regression analysis. The proposed equations'results match the experimental data quite well.

Neuro-fuzzy optimisation to model the phenomenon of failure by punching of a slab-column connection without shear reinforcement

  • Hafidi, Mariam;Kharchi, Fattoum;Lefkir, Abdelouhab
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.679-700
    • /
    • 2013
  • Two new predictive design methods are presented in this study. The first is a hybrid method, called neuro-fuzzy, based on neural networks with fuzzy learning. A total of 280 experimental datasets obtained from the literature concerning concentric punching shear tests of reinforced concrete slab-column connections without shear reinforcement were used to test the model (194 for experimentation and 86 for validation) and were endorsed by statistical validation criteria. The punching shear strength predicted by the neuro-fuzzy model was compared with those predicted by current models of punching shear, widely used in the design practice, such as ACI 318-08, SIA262 and CBA93. The neuro-fuzzy model showed high predictive accuracy of resistance to punching according to all of the relevant codes. A second, more user-friendly design method is presented based on a predictive linear regression model that supports all the geometric and material parameters involved in predicting punching shear. Despite its simplicity, this formulation showed accuracy equivalent to that of the neuro-fuzzy model.

Shear Strength Model for Interior Flat Plate-Column Connections (무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.345-356
    • /
    • 2010
  • An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.

Punching Shear Strength in Thick Slabs (Thick Slab의 펀칭전단강도)

  • Kim, Woo;Kim, Dae-Joong;Lee, Jee-An
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.47-52
    • /
    • 1994
  • In designing of slabs, a prediction of the punching shear capacity is one of important concerns. In this study, an equation was proposed to predict the punching shear strength of reinforced concrete slabs. The proposed equation depends on concrete compression strength, steel ratio, effective depth and slab radial length. The good correlation exists between the predicted punching shear strength and the measured.

  • PDF

Methods of punching shear strength analysis of reinforced concrete flat plates-A comparative study

  • Loo, Y.C.;Chiang, C.L.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.75-86
    • /
    • 1993
  • The punching shear strength of concrete flat plates is one of the topics of intensive research in recent years by various concrete structures researchers. This paper reviews four current methods of analysing the punching shear strength at the corner-and edge-column positions of reinforced concrete flat plates. They include those recommended in the Australian Standard AS3600-1988, the American Concrete Institute ACI318-89 and the British Standard on Concrete Practices (BS8110) as well as the approach developed at the University of Wollongong, Australia. Based on half-scale model test results, a comparative study of these four analysis methods is made with regard to their limitation, accuracy and reliability. It is found that the Wollongong approach in general gives the best performance in predicting the punching shear strength of flat plates with torsion strips and those with spandrel beams. The Australian Standard procedure performs just as satisfactorily for flat plates with torsion strips but tends to be unsafe for those with spandrel beams. Both the ACI and the British methods are applicable only to flat plates with torsion strips; they also tend to give unsafe predictions for the punching shear strength.

Strength Model for Punching Shear of Flat Plate-Column Connections (플랫플레이트-기둥 접합부의 뚫림전단강도)

  • Choi Kyoung-Kyu;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.163-174
    • /
    • 2004
  • A number of experiments were performed to investigate the punching shear strength of flat plate-column connections. According to the experiments, the punching shear strength varies significantly with design parameters such as the column size of the connection, reinforcement ratio, and boundary condition. However, current design methods do not properly address the effects of such design parameters. In the present study, a theoratical approach using Rankine's failure cirterion was attempted to define the failure mechanism of the punching shear According to the study, the failure mechanism can be classified into the compression-controlled and the tension-controlled, depending on the amount of bottom re-bars placed at the connection, and the punching shear strength is also significantly affected by the flexural damage of slab. Based on the finding, a new strength model of punching shear was developed, and verified by the comparisons with existing experiments and nonlinear finite element analyses. The comparisons show that the proposed strength model addressing the effects of various design parameters can predict accurately the punching shear strength, compared to the existing strength models.

Design Method of RC Flat Plate Slab Considering Unbalanced Moment (불균형모멘트를 고려한 RC 무량판 슬래브 설계방법)

  • Song, Jin-Kyu;Sing, Ho-Beom;Oh, Sang-Won;Han, Sun-Ae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.149-152
    • /
    • 2008
  • In structural design provision, maximum punching shear stress of slabs is prescribed as combined stress of direct shear occurred by balanced gravity load and eccentric shear occurred by unbalanced moment. This means that the effect of unbalanced moment is considered to decide the punching shear stress. However, from the resistance capacity standpoint, the effect of unbalanced moment strength is not considered for deciding punching shear strength. For this problem, a model to show unbalanced moment-punching shear interrelation was proposed. In the model, the relation between load effect and resistance capacity in unbalanced moment-punching shear was two-dimensionally expressed. Using the interrelation model, a method how unbalanced moment strength should be considered to decide the punching shear strength was proposed. Additionally, a effective width enlargement factor for deciding the unbalanced moment strength of flat plates with shear reinforcements was proposed. The interrelation model proposed in this paper is very effective for the design because not only punching shear and unbalanced moment strengths but also failure modes of flat plates can be accurately predicted.

  • PDF

A Study on Probability-based Punching Shear Model of Concrete Slabs Reinforced with FRP rebars (확률기법에 기초한 FRP rebar로 보강된 콘크리트 슬래브의 펀칭전단강도 모델에 대한 고찰)

  • Ju, Min-Kwan;Kim, Gyu-Seon;Kim, Hyun-Joong;Kim, Yong-Jae;Lee, Hyeon-Gi;Sim, Jong-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.151-152
    • /
    • 2010
  • The objective of this study is to propose the new punching shear model for two-way concrete slabs of building structures and bridge decks structures reinforced with FRP or steel rebars. To do this, two evaluating methods are applied here. One is the ratio of test to model and the other is probability analysis with probabilistic uncertainties. In conclusion, it shows that the proposed punching shear model evaluates the tested punching shear strength as conservative with stability and it exhibits better probabilistic characteristics than existing punching shear models.

  • PDF