• Title/Summary/Keyword: pumping tests

Search Result 128, Processing Time 0.021 seconds

Waterhammer For In-line Booster Pump (직결식 펌프의 수격현상)

  • Kim, S C.;Lee, K. B.;Kim, K. Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.208-216
    • /
    • 2004
  • The waterhammer occured when the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests of the waterhammer were carried out for PanGyo booster pumping station. The PanGyo pumuing station was installed booster pump of 6 sets and in-line pump of 2 sets. The main surge suppression device was equipped with the pump control valve and the surge relief valve as auxiliary. However, the pump control valve had not early controlled in the planned closing mode, and the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. After the addition surge suppression device was equipped with air chamber. Further more in-line pump is needed surge suppression device that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF

Analysis of Reinforcement Effect with Geotextile types on Soft Ground (연약노반상에서의 토목섬유 적용에 따른 보강효과 분석)

  • Lee Jin-Wook;Choi Chan-Yong;Lee Seong-Hyeok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.69-75
    • /
    • 2006
  • In this study, Several types of geotextile was used on the selected track-bed. The use of geotextile prove a economical and efficientmean to prevent the problem of mud-pumping and settlement. Field testing sections from Mock-haeng to Dong-ryang in the Chungbuk lines in Korea were selected to investigate in current condition the of track and roadbed. This testing site was divided into 5 sections. In the four sections, different types of geotextiles were installed. In order to estimate for performance of the reinforced section with geotextiles on the soft ground, four different geotextiles were installed and compared with no reinforced section. Also, after the installation, mud-pumping, settlement of elastic or plastic sleeper, failure of track, wheel-loads, and earth pressures were investigated. The following is the summaries from the field tests. As a conclusion, According to naked eyes investigation, mud pumping didn't happen at reinforced sections, but no reinforced section was happen to a top of track for 6 months. And Elastic displacements at the reinforced and no reinforced section were about $30.7\%\;and\;73.8\%,$ respectively. Also, It was found that plastic displacement in reinforced section was retrained about $50\%$ more than that in no reinforced section.

Evaluation of stream depletion due to nearby groundwater pumping using Baalousha analytical solution (Baalousha 해석해를 이용한 하천 주변 지하수 양수로 인한 하천수 감소 분석)

  • Lee, Jeongwoo;Kim, Nam Won;Chung, Il-Moon;Hong, Sung Hun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.99-107
    • /
    • 2018
  • This study was to evaluate the stream depletion due to groundwater pumping from 17 wells near the Anseongcheon upper stream using the Baalousha's analytical solution (2012) which directly considers stream width and streambed hydraulic conductivity. The input hydraulic values of aquifer and streambed were obtained from the pumping tests and seepage experiments. The estimated streamflow depletion rates divided by pumping rate (dimensionless stream depletion) showed a range from 0.23 to 0.89 for 5 year pumping. In particular, the results revealed that the groundwater pumping has insignificant effects on streamflow when the stream depletion factor (SDF) is higher than 1,000 with values of dimensionless stream depletion lower than 0.4. A more simple Hunt's solution (1999) also applied to the same wells, and the results showed that the difference between the dimensionless stream depletions calculated by using both solutions could be negligible. From the comparison of the Baalousha's solution (2012) with the Hunt's solution (1999) with total 3,000 cases of simulations with combinations of various aquifer and stream properties, the stream-well distance should be more longer than stream width for reducing the discrepancy between both solutions.

Hydrogeological Characteristics of the Wangjeon-ri PCWC area, Nonsan-city, with an Emphasis on Water Level Variations (논산시 왕전리 수막재배지역의 지하수위 변화)

  • Cho, Byong-Wook;Yun, Uk;Lee, Byeong-Dae;Ko, Kyung-Seok
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.195-205
    • /
    • 2012
  • We evaluated the results of pumping tests, the amount of groundwater used by Protected Cultivation with Water Curtain (PCWC), and monthly depth to water table (DTW) at the Wangjeon-ri area, Nonsan City, to elucidate the cause of a decrease in pumping rate during the winter PCWC season. The transmissivity and storage coefficient at eight sites where the major aquifer is alluvium, vary from 119.9 to $388.1m^2/d$ and $1.5{\times}10^{-4}$ to $5.5{\times}10^{-4}$, respectively. The pumping rate for PCWC during three months (Dec. to Feb.) averaged about $8,100m^3/d$ and the maximum water level in the area varied by about 10 m. Groundwater levels had fully recovered by August-five months after pumping for PCWC had ceased. These observations indicate that the pumping rate during the winter PCWC season was excessive compared with groundwater productivity in the area. Groundwater level in the central PCWC area varied from -3.0 to 4.38 m, exceeding the water level of the Nosung Stream for only three months (Aug. to Oct.). This result indicates that Nosung Stream recharges the area during the period from November to July. To solve the problem of reduced pumping rate during the winter PCWC season, it would be necessary to reduce the amount of groundwater used for PCWC or to develop an artificial recharge system using recycled groundwater.

A Study on the Characteristics of Behavior of Railway Roadbed due to Softening (철도노반의 연약화에 따른 거동특성 연구)

  • Lee Jin Wook;Lee Sung Hyuck;Kim Dae Sang;Kwon Byung Sung
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.182-187
    • /
    • 2003
  • The analysis of mud pumping which causes track irregularities during softening of present roadbed is needed in order to prepare countermeasure that is efficient and reasonable against the softening of railway roadbed. In this study, model tests were performed in order to evaluate property of the railway softening under the train loading, considering the wheel load and the impact coefficient due to the train passing velocity. The existence of the mud pumping, settlements of roadbed and vertical earth pressure were measured under the train loading.

  • PDF

FEFLOW를 이용한 천부지열 활용 예측 모델링

  • 심병완;송윤호;김형찬
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.399-402
    • /
    • 2004
  • An aquifer thermal energy storage (ATES) model is simulated by FEFLOW according to the scenario of heat pump operation in two layered confining aquifer. The scenario is consisted of 4 steps: 90 days pumping (west well) and waste water injection (east well: 35 $^{\circ}C$), 90 day s stop, 90days pumping (east well) and waste water injection (west well: 5 $^{\circ}C$), and 95 days stop. The injection of the waste water is limited in the second layer and the first layer is aquitard. The temperature distribution at the surface shows low difference with reference temperature and opposit aspect with that of the second layer because the thermal transition through the first layer is very slow. Even though the simulated thermal transition in the aquifer system have a difference with real ATES system, optimal design and operate system can be developed with field tests and operational experience.

  • PDF

Mock-up Tests of Concrete Filled Steel Tubular Columns (콘크리트 충전 강관 기둥의 시공에 관한 연구)

  • Lee, Deok-Chan;Choi, Jin-Man;Lee, Do-Heon;Kim, Hoon;Kim, Jin-Cheol;Park, Yon-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.382-387
    • /
    • 1996
  • Three concrete filled steel tubular columns with six inner diaphrams are constructed and tested under field conditions. The size and shape of three columns are exactly same. The cross section is $40\times40cm$, and the height is 9m. Each column is constructed with normal concrete, CFST concrete, and high flowing concrete, respectively. Concrete is pumped into bottom parts of steel tubular columns from a concrete pump on the ground. Test data indicate that the slump flow of the concrete place in the top of the column is lower than that of the concrete before pumping by about 10~20cm. Slump flow loss of high flowing concrete caused by pumping is high compared to the other concretes. Concrete pump pressure of high flowing concrete is somewhat higher than that of CFST concrete.

  • PDF

Well Loss in Fractured Rock Formation with Radial Flow during Pumping Test (양수시험시 방사상흐름을 보이는 균열암반 대수층에서의 우물손실)

  • 이철우;이대하;정지곤;김구영;김용제
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • Pumping tests were carried out from seven wells in fractured rocks. The time-drawdown data were obtained from pumping wells and corrected for the elapsed time of step drawdown test using Cooper-Jacob's method. A statistical method. the least square of error, was used to yield the coefficient of aquifer losses, the coefficient of well losses, and the power which indicates the severity of the turbulence. The values of the power range from 1.65 to 6.48. The well losses result mainly from turbulent flow caused by radial flow nearby pumping wells. The turbulent flow depends on Reynolds number. Since the hydraulic characteristics of fractured rocks control the fluid velocity, the value of the power is an important factor to understand the aquifer system of fractured rocks.

Investigation on the Distnbution of the Groundwater at paho-Dong Area (지하수 수자원 분포에 관한 조사연구 (경북 달성군 파호동을 중심으로))

  • 나인엽
    • Water for future
    • /
    • v.12 no.2
    • /
    • pp.36-42
    • /
    • 1979
  • This study has been conducted to find out the location and amount of the subterrain water body developed in the alluvial stratum in Paho-Dong, Sungsee-Myo-n, Dalsung-Kun are. An earlier test drilling was done in this area by R.O.K. Agricultural Promotion Corporation. The area consists of a small river basin and surrounding low hills developed around the junction of the Nakdong and Kumho Rivers. The strata of this area are made of Paldal gravel, Bokhyundong and Banyawol layers which were formed in the cretaceous period of the Meso-saicera or acid dikes and covered with-irregular alluvial layers. The alluvial layer in this area is composed of rather minute particles and proportional electric resistance tests on this layer show $10^2\;-\;10^3\;\Omega/cm$. The drillings up to 12meters deep showed only the sand layer (Form 3 to 26meters in thickness) contains water. The sand layers can not be considered a good water trapping one. Applying the data from the drillings to A.Hazen's equation, $K\;=\;{cd_e}^2\;(0.7\;+0.03t)$ to get the theoretical value of the water infilterated, I calculated it as K=13.92m/day. And again the value was set to Dupuit equation, (equation omitted) to acquire the pumping water amount the result was $Q_1\;=\;77.20\;\textrm{m}^3/day$. When the data-applied to the equation for pumping water amount, (equation omitted), the results were $Q_2\;=\;122.39\;\textrm{m}^3/day$ and K = 38m/day $Q_1\;and;Q_2$ (tow types of pumping water amount) represent proper value decrease and maximum value decrease respectively. Therefore, $Q_2$ is the least amount of water we can pump. The area covers about $1,555,000\;\textrm{m}^2$ and the maximum water needed in this area amounts to $155,000\textrm{m}^3$. That means we have to drill 1,406 pumping wells. It is concluded that undertaking the project in this area is irrational or even desperate and surface water should be developed more favorably.

  • PDF

Suggestion of a Model for Filling Coefficient of Hydraulic Cylinder in Concrete Pump (콘크리트펌프 유압실린더의 충진율 모델 제안)

  • Park, Chan-Kyu;Jang, Kyong-Pil;Jeong, Jae-Hong;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.195-202
    • /
    • 2016
  • In general, piston pumps are frequently used for concrete pumping. Filling coefficient signifies the ratio volume of a hydraulic cylinder to volume of concrete inside the cylinder. Therefore, it may be considered as a parameter directly affecting the flow rate and efficiency for concrete pumping. However, accurate analyses on this aspect have not yet been performed. In this paper, the data measured from horizontal pipeline pumping tests for 350m and 548m in length was analyzed to identify the relationships of rheological properties of concrete and stroke time with the filling coefficient. In addition, an equation allowing prediction of the filling coefficient from rheological properties of concrete and stroke time has been suggested.