DOI QR코드

DOI QR Code

Hydrogeological Characteristics of the Wangjeon-ri PCWC area, Nonsan-city, with an Emphasis on Water Level Variations

논산시 왕전리 수막재배지역의 지하수위 변화

  • Cho, Byong-Wook (Groundwater Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Yun, Uk (Groundwater Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Byeong-Dae (Groundwater Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Ko, Kyung-Seok (Groundwater Department, Korea Institute of Geoscience and Mineral Resources)
  • 조병욱 (한국지질자원연구원 지구환경연구본부) ;
  • 윤욱 (한국지질자원연구원 지구환경연구본부) ;
  • 이병대 (한국지질자원연구원 지구환경연구본부) ;
  • 고경석 (한국지질자원연구원 지구환경연구본부)
  • Received : 2012.03.28
  • Accepted : 2012.05.21
  • Published : 2012.06.30

Abstract

We evaluated the results of pumping tests, the amount of groundwater used by Protected Cultivation with Water Curtain (PCWC), and monthly depth to water table (DTW) at the Wangjeon-ri area, Nonsan City, to elucidate the cause of a decrease in pumping rate during the winter PCWC season. The transmissivity and storage coefficient at eight sites where the major aquifer is alluvium, vary from 119.9 to $388.1m^2/d$ and $1.5{\times}10^{-4}$ to $5.5{\times}10^{-4}$, respectively. The pumping rate for PCWC during three months (Dec. to Feb.) averaged about $8,100m^3/d$ and the maximum water level in the area varied by about 10 m. Groundwater levels had fully recovered by August-five months after pumping for PCWC had ceased. These observations indicate that the pumping rate during the winter PCWC season was excessive compared with groundwater productivity in the area. Groundwater level in the central PCWC area varied from -3.0 to 4.38 m, exceeding the water level of the Nosung Stream for only three months (Aug. to Oct.). This result indicates that Nosung Stream recharges the area during the period from November to July. To solve the problem of reduced pumping rate during the winter PCWC season, it would be necessary to reduce the amount of groundwater used for PCWC or to develop an artificial recharge system using recycled groundwater.

겨울철 수막재배를 하고 있는 논산시 왕전리지역의 지하수 취수량감소 원인을 파악하기 위하여 양수시험을 실시하였고, 수막재배에 이용되고 있는 지하수 사용량과 월별 지하수위를 측정하였다. 8개 지하수공에서 양수시험 결과 투수량계수는 $119.9{\sim}388.1m^2/d$, 저류계수는 $1.5{\times}10^{-4}{\sim}5.5{\times}10^{-4}$의 범위이고 주 대수층은 충적층으로 나타났다. 수막재배용 지하수의 양수는 겨울철 약 3개월에 걸쳐서 일어나며 일평균 양수량은 $8,100m^3/d$ 정도였으며 연간 최대 지하수위 변동은 10 m까지 일어나고 있다. 연구지역의 지하수위는 수막재배용 양수가 중단된 지 5개월이 지난 8월에야 완전한 수위회복을 보인다. 이는 연구지역 대수층의 지하수 산출능력에 비해서 겨울철 수막재배시기의 과도한 양수에 의한 것으로 해석된다. 연구지역 중심부 일대의 지하수위는 -3.0~4.38 m로서 연간 8, 9, 10월을 제외한 나머지 9개월은 노성천 하천수위보다 낮아서 하천수가 연구지역으로 유입되는 손실하천의 양상을 띤다. 연구지역에서 겨울철 수막재배에 따른 취수량 감소문제를 해결하기 위해서는 지금보다 규모가 적은 수막재배시설을 운영하여 양수량을 줄이거나 수막재배에 이용된 지하수를 재활용하는 인공함양 수막재배시스템 개발 등이 필요하다.

Keywords

References

  1. 건설교통부, 2007, 지하수관리 기본계획, 149p.
  2. 김학주, 이시영, 이재한, 백의, 전희, 조명환, 유인호, 류희량, 김기덕, 박진섭, 2007, 비닐하우스 수막재배 기술, 농촌진흥청 원예연구소, 88p.
  3. 이봉주, 문상호, 조병욱, 성익환, 이철우, 2001, 스펙트럼 분석을 통한 지하수위 변동의 원인 규명, 지질학회지, 37, 287-296.
  4. 이진용, 이강근, 2002, 강우에 의한 지하수위 반응양상 비교분석: 강원도 원주지역과 경기도 의왕지역, 지하수토양환경, 7, 171-176.
  5. 하규철, 고경석, 고동찬, 염병우, 이강근, 2006, 시계열분석을 이용한 하천수위에 따른 다심도 관정의 지하수위 변동해석, 자원환경지질, 39, 269-284.
  6. 한국지질자원연구원, 2009, 지구환경변화 대응 지하수 확보 통합솔루션 개발, GP2009-009-01-2009(1), 379p.
  7. 한국지질자원연구원, 2010, 지구환경변화 대응 지하수 확보 통합솔루션 개발, GP2009-009-01-2010(2), 347p.
  8. 한국지질자원연구원, 2011, 지구환경변화 대응 지하수 확보 통합솔루션 개발, GP2009-009-01-2011(3), 559p.
  9. 함세영, 정재열, 김형수, 한정상, 차용훈, 2005, 창원시 대신면 강변여과수 취수부지 주변의 지하수 유동 모델링, 자원환경지질, 38, 67-78.
  10. Banzhaf, S., Krein, A., and Scheytt, T., 2011, Investigative approaches to determine exchange processes in the hyporheic zone of a low permeability riverbank, Hydrogeology Journal, 19, 591-601. https://doi.org/10.1007/s10040-011-0707-4
  11. Giap, T.V., 2003, Use of radon-222 as tracer to estimate groundwater infiltration velocity in a river bank area, Nuclear science and technology, 2, 12-17.
  12. Hantusch, M.M., 2005, Modelling stream-aquifer interactions with linear response functions, J. Hydrology, 311, 59-79. https://doi.org/10.1016/j.jhydrol.2005.01.007
  13. Healy, R.W. and Cook, P.G., 2002, Using groundwater level to estimate recharge, J. Hydrology, 42, 425-439.
  14. Mair, A. and Fares, A., 2011, Time series analysis of daily rainfall and streamflow in a volcanic dikeintruded aquifer system, O'hau, Hawai'i, USA, Hydrogeology Journal, 19, 929-944. https://doi.org/10.1007/s10040-011-0740-3
  15. Packman, A.I. and Salehin, M., 2003, Relative roles of stream flows and sedimentary conditions in controling hyporheic exchange. Hydrobilogia, 494, 291-297. https://doi.org/10.1023/A:1025403424063
  16. USGS, 1982, Measurement and computation of streamflow: volume 1, measurement of stage and discharge, 284p.
  17. USGS, 2001, Groundwater level monitoring and the importance of long-term water level data, 68p.
  18. Winter, T.C., 1999, Relation of streams, lakes, and wet lands to groundwater flow systems, Hydrogeology Journal, 7, 28-45. https://doi.org/10.1007/s100400050178
  19. Winter, T.C., Harvey, J.W., Franke, O.L., and Alley, W.M., 1998, Ground and surface water a single resource, USGS Circ 1139. 79p.

Cited by

  1. Analysis of Groundwater Variations using the Relationship Between Groundwater use and Daily Minimum Temperature in a Water Curtain Cultivation Site vol.24, pp.2, 2014, https://doi.org/10.9720/kseg.2014.2.217
  2. Analysis of Temporal and Spatial Changes in Observed Groundwater Level in a Paddy Region vol.57, pp.6, 2015, https://doi.org/10.5389/KSAE.2015.57.6.163
  3. Impacts of Seasonal Pumping on Stream-Aquifer Interactions in Miryang, Korea vol.55, pp.6, 2017, https://doi.org/10.1111/gwat.12543
  4. Quantification of seasonally variable water flux between aquifer and stream in the riparian zones with water curtain cultivation activities using numerical simulation vol.53, pp.2, 2017, https://doi.org/10.14770/jgsk.2017.53.2.277
  5. Analysis of Groundwater Use and Discharge in Water Curtain Cultivation Areas: Case Study of the Cheongweon and Chungju Areas vol.22, pp.4, 2012, https://doi.org/10.9720/kseg.2012.4.387
  6. Estimating Groundwater Recharge using the Water-Table Fluctuation Method: Effect of Stream-aquifer Interactions vol.18, pp.5, 2013, https://doi.org/10.7857/JSGE.2013.18.5.065
  7. Determining Optimal Locations of an Artificial Recharge Well using an Optimization-coupled Groundwater Flow Model vol.19, pp.3, 2014, https://doi.org/10.7857/JSGE.2014.19.3.066
  8. Modeling Stream-Aquifer Interactions Under Seasonal Groundwater Pumping and Managed Aquifer Recharge pp.0017467X, 2018, https://doi.org/10.1111/gwat.12799
  9. SWAT을 이용한 미래기후변화에 따른 금강유역의 지하수위 거동 평가 vol.51, pp.3, 2012, https://doi.org/10.3741/jkwra.2018.51.3.247
  10. 산소/수소안정동위원소를이용한지하수-지표수연계성연구: 논산시왕전리수막 재배지역 사례 vol.51, pp.6, 2012, https://doi.org/10.9719/eeg.2018.51.6.567
  11. Assessment of Climate Change Impact on Future Groundwater-Level Behavior Using SWAT Groundwater-Consumption Function in Geum River Basin of South Korea vol.11, pp.5, 2012, https://doi.org/10.3390/w11050949
  12. Assessing seasonal variations in water sources of streamflow in a temperate mesoscale catchment with granitic bedrocks using hydrochemistry and stable isotopes vol.38, pp.None, 2021, https://doi.org/10.1016/j.ejrh.2021.100940