• Title/Summary/Keyword: pumping process

Search Result 201, Processing Time 0.032 seconds

The Vacuum In-Line Sealing Process for High Efficiency PDP (고효율 PDP 제작을 위한 진공 인라인 실장 공정)

  • Kwon, Sang-Jik;Jang, ChAn-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.23-27
    • /
    • 2005
  • The effects of the base vacuum level on a plasma display panel (PDP) produced by the vacuum in-line sealing technology were investigated. The main equipment of the vacuum in-line sealing process consists of the sealing chamber, pumping systems for evacuating, mass flow controller for introducing the plasma gases, and other measuring systems. During the sealing process, the impurity gases were fully evacuated and the panel was prevented from the adsorption of impurity gases. As a result, the brightness increased as the impurity gas density decreased, so we found that the vacuum in-line sealing process was more efficient technology an the conventional sealing process.

  • PDF

Ultrahigh Vacuum Technologies Developed for a Large Aluminum Accelerator Vacuum System

  • Hsiung, G.Y.;Chang, C.C.;Yang, Y.C.;Chang, C.H.;Hsueh, H.P.;Hsu, S.N.;Chen, J.R.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.309-316
    • /
    • 2014
  • A large particle accelerator requires an ultrahigh vacuum (UHV) system of average pressure under $1{\times}10^{-7}$ Pa for mitigating the impact of beam scattering from the residual gas molecules. The surface inside the beam ducts should be controlled with an extremely low thermal outgassing rate under $1{\times}10^{-9}Pa{\cdot}m^3/(s{\cdot}m^2)$ for the sake of the insufficient pumping speed. To fulfil the requirements, the aluminum alloys were adopted as the materials of the beam ducts for large accelerator that thanks to the good features of higher thermal conductivity, non-radioactivity, non-magnetism, precise machining capability, et al. To put the aluminum into the large accelerator vacuum systems, several key technologies have been developed will be introduced. The concepts contain the precise computer numerical control (CNC) machining process for the large aluminum ducts and parts in pure alcohol and in an oil-free environment, surface cleaning with ozonized water, stringent welding process control manually or automatically to form a large sector of aluminum ducts, ex-situ baking process to reach UHV and sealed for transportation and installation, UHV pumping with the sputtering ion pumps and the non-evaporable getters (NEG), et al. The developed UHV technologies have been applied to the 3 GeV Taiwan Photon Source (TPS) and revealed good results as the expectation. The problems of leakage encountered during the assembling were most associated with the vacuum baking which result in the consequent trouble shootings and more times of baking. Then the installation of the well-sealed UHV systems is recommended.

A Charge Pump with Improved Charge Transfer Capability and Relieved Bulk Forward Problem (전하 전달 능력 향상 및 벌크 forward 문제를 개선한 CMOS 전하 펌프)

  • Park, Ji-Hoon;Kim, Joung-Yeal;Kong, Bai-Sun;Jun, Young-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.137-145
    • /
    • 2008
  • In this paper, novel CMOS charge pump having NMOS and PMOS transfer switches and a bulk-pumping circuit has been proposed. The NMOS and PMOS transfer switches allow the charge pump to improve the current-driving capability at the output. The bulk-pumping circuit effectively solves the bulk forward problem of the charge pump. To verify the effectiveness, the proposed charge pump was designed using a 80-nm CMOS process. The comparison results indicate that the proposed charge pump enhances the current-driving capability by more than 47% with pumping speed improved by 9%, as compared to conventional charge pumps having either NMOS or PMOS transfer switch. They also indicate that the charge pump reduces the worst-case forward bias of p-type bulk by more than 24%, effectively solving the forward current problem.

Optimization of Screw Pumping System (SPS) for Mass Production of Entrapped Bifidus

  • Ryu, Ji-Sung;Lee, Yoon-Jong;Choi, Soo-Im;Lee, Jae-Won;Heo, Tae-Ryeon
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.566-571
    • /
    • 2005
  • Process of screw-pumping system (SPS) was optimized for mass production of encapsulated bifidus. SPS entrapment device was composed of feeding component, with optimized nozzle size and length of 18G (0.91 cm) and 4 mm, respectively, screw pump, and 37-multi-nozzle. Screw component had five wing turns [radius (r)=26 to 15 mm] from top to bottom of axis at 78-degree angle from middle of the screw, and two wings were positioned at screw edge to push materials toward nozzle. For nozzle component, 37 nozzles were attached to 20-mm round plate. Air compressor was attached to SPS to increase productivity of encapsulated bifidus. This system could be operated with highly viscous (more than 300 cp) materials, and productivity was higher than $1128\;{\pm}\;30\;beads/min$. Viability of encapsulated bifidus was $5.45\;{\times}\;10^8\;cfu$/bead, which is superior to that of encapsulated bifidus produced by other methods ($2.51{\times}10^8\;cfu$/bead). Average diameter of produced beads was $2.048\;{\pm}\;0.003\;mm$. Survival rate of SPS-produced encapsulated bifidus was 90% for Simulator of the Human Intestinal Microbial Ecosystem test and 88% in fermented milk (for 14 days). These results show SPS is effective for use in development of economical system for mass production of viable encapsulated bifidus.

Study on Spinning Behavior and Structure of Polyester Fibers by the Melt-type Electrospinning Method (용융형 전기방사법에 의한 폴리에스테르섬유의 방사거동과 구조에 관한 연구)

  • Lee, Jin-Ah;Lim, Min-Soo;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.273-276
    • /
    • 2002
  • The fiber formation of conventional melt spinning is extruded by forcing the polymer melt through a spinneret by pumping mechanism usually involving high pressure. This is followed by cooling, solidification and appropriate drawing of the fiber. The spinning process is broadly applicable to polyolefin, polyamide, polyester and indeed the whole range of fibers forming thermoplastic polymers. (omitted)

  • PDF

Suppression Effect and Coupled Two-Time Motion of the Photoisomerization in the Crosslinking Polymer System (가교 고분자 계에서 광이성질화의 억제효과와 두 시간상수의 동적 특성 연구)

  • Jeong, Mi-Yun;J. W. Wu;Jin, Jung-il
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.250-251
    • /
    • 2000
  • The photoisomerization of the crosslinked and uncrosslinked polymer-pair with azo linkages was studied by the photoinduced birefringence. The amount of photoinduced birefringence of crosslinked polymer system was much smaller than that of uncrosslinked polymer system, even when varying pumping laser power, so the photoisomerization of an azo chromophores could be controlled by crosslinking process. (omitted)

  • PDF

The Design, Fabrication and Chacteristic Experiment of a novel type Superconducting Power Supply for Persistant Current mode (새로운 형태의 영구전류모드용 초전도 전원장치의 설계. 제작 및 동작특성 실험)

  • Kim, Ho-Min;Chu, Yong;Yoon, Yong-Soo;Yang, Jun-Young;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.244-246
    • /
    • 1999
  • This paper deals with the design and fabrication of a novel superconducting power supply system, and characteristics have been analyzed through experiments. Superconducting power supply consists of rotating and static parts, and superconducting magnet. In this experiment, the current pumping characteristics have been analyzed with superconducting sheets placed in parallel within the static part of the machine. In addition, in order to observe the rotating flux distribution in the superconducting sheet, several hall-sensors were placed in it. With the flux distribution acquired, the effect of the flux on the superconducting sheet during the process of current pumping have been analyzed. Also, general operational characteristics of the superconducting power supply system have been investigated on the basis of the current and voltage data, and magnetic field values acquired through the experiments.

  • PDF

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF

Development of High Quality Die Casting Technology with Function to Purify Molten Metal (용탕청정기능을 부여한 고품질 다이캐스팅 기술의 개발)

  • Hatano, Tomoyuki;Takagi, Hiromi;Inagaki, Mitsugi
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.3-9
    • /
    • 2004
  • Die casting is "a process in which molten metal is injected at high velocity and pressure into a mold(die) cavity". Casting with smooth surfaces, high dimensional precision, complicated shapes, and reduced weight can be obtained using this process. But this process is susceptible to casting defects such as porosities, scattered chilled layers, hard spots, etc. For preventing casting defects, we developed "low-velocity high pressure die casting technology", "squeeze die casting technology", "heat insulating sleeve lubricant technology", and "direct pouring technology". The "direct pouring technology" is useful for producing molten metal without oxide contamination. It consists of a pumping system which supplies pure molten metal to the die casting machine. By using this technology, we have successfully reduced oxide contamination in castings to 1/20 of that of our previous castings.

Status of vacuum technique in KSTAR (KSTAR 토카막 장치 진공 기술 현황)

  • Kim, Kwang-Pyo;Kim, Hyun-Seok
    • Vacuum Magazine
    • /
    • v.4 no.1
    • /
    • pp.16-23
    • /
    • 2017
  • Recently, KSTAR, Korea's superconducting fusion energy research and development device, has succeeded in driving the high performance plasma for 70 seconds for the first time in the world. Continuous plasma operation technology is an essential factor for commercialization of fusion energy power generation. Therefore, this achievement is expected to play a major role in the research of fusion technology required for future fusion power plants. In order to operate the KSTAR, the discharge process in which the neutral gas is turned into the plasma should be preceded in the start-up (breakdown) phase of tokamak operation. This process essentially involves the vacuum environment in the tokamak device. KSTAR has successfully operated a vacuum pumping system to achieve the target level of the vacuum environment through a high temperature baking operation, a discharge cleaning process and boronization.