• Title/Summary/Keyword: pultrusion

Search Result 85, Processing Time 0.024 seconds

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

An Analytical Study on the Buckling of Orthotropic Plates and Local Buckling of Compression Members (직교이방성 판의 좌굴 및 압축재의 국부좌굴에 대한 해석적 연구)

  • Choi, Jin-Woo;Lee, Kang-Yeon;Park, Jung-Hwan;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • In this paper, we present the analytical study results pertaining to the buckling of the orthotropic plates and local buckling of structural compression members composed of orthotropic plate components. Fiber reinforced polymeric plastic (FRP) materials, have many advantages over conventional structural materials such as steel and concrete. The advantages of the FRP materials are high specific strength and stiffness, high corrosion resistance, right weight, etc. Among the various manufacturing methods, pultrusion process is one of the best choices for the mass production of structural plastic members. Since the major reinforcing fibers are placed along the axial direction of the member, this material is usually considered as an orthotropic (tranversely isotropic, more specifically) material. However, pultruded fiber reinforced plastic structural members have low modulus of elasticity and are composed of orthotropic thin plate components the members are prone to buckle. Therefore, stability is an important issue in the design of the pultruded FRP structural members. In this paper, the buckling of orthotropic plates and the local buckling of pultruded FRP structural members are investigated by following the previous research results and the local buckling strength of the member produced in the domestic manufacturer is found.

Shape Optimum Design of Pultruded FRP Bridge Decks (인발성형된 FRP 바닥판의 형상 최적설계)

  • 조효남;최영민;김희성;김형열;이종순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2004
  • Due to their high strength to weight ratios and excellent durability, fiber reinforced polymer(FRP) is widely used in construction industries. In this paper, a shape optimum design of FRP bridge decks haying pultruded cellular cross-section is presented. In the problem formulation, an objective function is selected to minimize the volumes. The cross-sectional dimensions and material properties of the deck of FRP bridges are used as the design variables. On the other hand, deflection limits in the design code, material failure criteria, buckling load, minimum height, and stress are selected as the design constraints to enhance the structural performance of FRP decks. In order to efficiently treat the optimization process, the cross-sectional shape of bridge decks is assumed to be a tube shape. The optimization process utilizes an improved Genetic Algorithms incorporating indexing technique. For the structural analysis using a three-dimensional finite element, a commercial package(ABAQUS) is used. Using a computer program coded for this study, an example problem is solved and the results are presented with sensitivity analysis. The bridge consists of a deck width of 12.14m and is supported by five 40m long steel girders spaced at 2.5m. The bridge is designed to carry a standard DB-24 truck loading according to the Standard Specifications for Highway Bridges in Korea. Based on the optimum design, viable cross-sectional dimensions for FRP decks, suitable for pultrusion process are proposed.

A Study on the Ternary GF/PA/PP Composites Manufactured by Using Pre-impregnated Glass Fiber (유리섬유를 미리 함침시켜 제조한 GF/PA/PP 삼성분 복합재료에 관한 연구)

  • 윤병선;우동진;서문호;이석현
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.701-712
    • /
    • 2000
  • The continuous fiber reinforced composites of GF/PA were fabricated using a pultrusion resin impregnation apparatus and cut into pellets of 6 mm length. GF/PA pellets were then melt-mixed with PP resin to prepare new types of ternary composites, GF/PA/PP. Mechanical and rheological properties of such composites revealed to be better than conventional ternary composites due to the longer average glass fibers. Measurements also showed that the mechanical properties of the composites prepared by direct injection molding were higher than those of the composites prepared by injection molding followed by extrusion. To improve adhesions of fiber surfaces and polymer matrix, PP-MAH (maleic anhydride) has been introduced in the GF/PA/PP composites as a compatibilizer. It was found that PP-MAH did indeed improve surface adhesion between fibers and polymer matrix and that, as a result, various mechanical properties were markedly enhanced. Visualization of the phase structure in the samples was done by means of SEM. The surfaces of glass fibers in GF/PA/PP composites revealed that the fibers remained to be encapsulated by PA resin. However, pre-encapsulation did not persist in GF/PA/PP/PP-MAH composites due to the improvement of surface adhesion between fibers and polymer matrix, although resin sticking to the fiber was observed.

  • PDF

Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member (인발성형된 이형 GFRP 보강근과 GFRP 보강 콘크리트 부재의 크리프 거동)

  • You, Young-Jun;Park, Young-Hwan;Kim, Hyung-Yeol;Choi, Jin-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2013
  • Fiber reinforced polymer (FRP) has been gathering interest from designers and engineers for its possible usage as a replacement reinforcement of a steel reinforcing bar due to its advantageous characteristics such as high tensile strength, non-corrosive material, etc. Since it is manufactured with various contents ratios, fiber types, and shapes without any general specification, test results for concrete members reinforced with these FRP reinforcing bars could not be systematically used. Moreover, since investigations for FRP reinforced members have mainly focused on short-term behavior, the purpose of this study is to evaluate long-term behaviors of glass FRP (GFRP) reinforcing bar and concrete beams reinforced with GFRP. In this paper, test results of tensile and bond performance of GFRP reinforcing bar and creep behavior are presented. In the creep tests, results showed that 100 years of service time can be secured when sustained load level is below 55% of tensile strength of GFRP reinforcing bar. A modification factor of 0.73 used to calculate long-term deflection of GFRP reinforced beams was acquired from the creep tests for GFRP reinforced concrete beams. It is expected that these test results would give more useful information for design of FRP reinforced members.