• Title/Summary/Keyword: pulse phase

Search Result 1,140, Processing Time 0.028 seconds

Phase Locked Loop based Pulse Density Modulation Scheme for the Power Control of Induction Heating Applications

  • Nagarajan, Booma;Sathi, Rama Reddy
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.65-77
    • /
    • 2015
  • Resonant converters are well suited for induction heating (IH) applications due to their advantages such as efficiency and power density. The control systems of these appliances should provide smooth and wide power control with fewer losses. In this paper, a simple phase locked loop (PLL) based variable duty cycle (VDC) pulse density modulation (PDM) power control scheme for use in class-D inverters for IH loads is proposed. This VDC PDM control method provides a wide power control range. This control scheme also achieves stable and efficient Zero-Voltage-Switching (ZVS) operation over a wide load range. Analysis and modeling of an IH load is done to perform a time domain simulation. The design and output power analysis of a class-D inverter are done for both the conventional pulse width modulation (PWM) and the proposed PLL based VDC PDM methods. The control principles of the proposed method are described in detail. The validity of the proposed control scheme is verified through MATLAB simulations. The PLL loop maintains operation closer to the resonant frequency irrespective of variations in the load parameters. The proposed control scheme provides a linear output power variation to simplify the control logic. A prototype of the class-D inverter system is implemented to validate the simulation results.

Pulse Multiplication of 6-Pulse Thyristor Converter with Simple Auxiliary Circuit (간단한 보조회로 추가에 의한 6-펄스 싸이리스터 컨버터의 다펄스화)

  • 정재혁;최세완;이인환;황용하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.568-574
    • /
    • 2000
  • A new pulse multiplication technique based on 6-pulse thyristor converters is proposed in this paper. With the proposed technique, 12-pulse, 18-pulse and 24-pulse operations have been obtained both on the input current and on the output voltage. A control strategy over the whole range of phase angle is provided along with sophisticated input current and output voltage analysis. Experimental results from a laboratory prototype verify the proposed theory.

  • PDF

A Sensorless Speed Control of 2-Phase Asymmetric SRM with Parameter Compensator (파라미터 보상기를 가지는 비대칭 SRM의 센서리스 속도제어)

  • Lim, Geun-Min;Ahn, Jin-Woo;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • This paper presents a sensorless speed control of a 2-phase switch reluctance motor(SRM). The proposed sensorless control scheme is based on the slide mode observer with parameter compensator to improve the estimation performance. In the stand still position, the initial rotor position is determined by pulse current responses of each phase windings and the current difference. In order to determine an accurate initial rotor position, the two initial rotor positions are estimated by the difference of the pulse currents. From the stand still to the operating region, a simple open loop control which determines the commutation sequence by the pulse current of the unexcited phase winding is used. When the motor speed is reached to the sensorless control region, the estimated rotor position and speed by the slide mode observer are used to control the SRM. The flux calculator used in the slide mode observer is designed by phase voltage and the voltage drops in the phase resistance of the winding. The accuracy of the flux calculator is dependent on the phase resistance. For the continuous update of the phase resistance, current gradient at the inductance break point is used in this paper. The error of the estimated rotor position at the current gradient position is used to update the phase resistance to improve the sensorless scheme. The proposed sensorless speed control scheme is verified with a practical compressor used in home appliances. And the results show the effectiveness of the proposed control scheme.

Space-vector PWM Techniques for a Two-Phase Permanent Magnet Synchronous Motor Considering a Reduction in Switching Losses

  • Lin, Hai;Zhao, Fei;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.905-915
    • /
    • 2015
  • Two PWM techniques using space vector pulse-width modulation (SVPWM) are proposed for a two-phase permanent magnet synchronous motor (PMSM) driven by a two-phase eight-switch inverter. A two-phase motor with two symmetric stator windings is usually driven by a two-phase four-, six-, or eight-switch inverter. Compared with a four- and six-switch inverter, a two-phase eight-switch inverter can achieve larger power output. For two-phase motor drives, the SVPWM technique achieves more efficient DC bus voltage utilization and less harmonic distortion of the output voltage. For a two-phase PMSM fed by a two-phase eight-switch inverter under a normal SVPWM scheme, each of the eight PWM trigger signals for the inverter have to be changed twice in a cycle, causing a higher PWM frequency. Based on the normal SVPWM scheme, two effective SVPWM schemes are investigated in order to reduce the PWM frequency by rearranging four comparison values, while achieving the same function as the normal PWM scheme. A detailed explanation of the normal and two proposed SVPWM schemes is illustrated in the paper. The experimental results demonstrate that the proposed schemes achieve a better steady performance with lower switching losses compared with the normal scheme.

Design of a Clock and Data Recovery Circuit Using the Multi-point Phase Detector (다중점 위상검출기를 이용한 클럭 및 데이터 복원회로 설계)

  • Yoo, Sun-Geon;Kim, Seok-Man;Kim, Doo-Hwan;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.72-80
    • /
    • 2010
  • The 1Gbps clock and data recovery (CDR) circuit using the proposed multi-point phase detector (PD) is presented. The proposed phase detector generates up/down signals comparing 3-point that is data transition point and clock rising/falling edge. The conventional PD uses the pulse width modulation (PWM) that controls the voltage controlled oscillator (VCO) using the width of a pulse period's multiple. However, the proposed PD uses the pulse number modulation (PNM) that regulates the VCO with the number of half clock cycle pulse. Therefore the proposed PD can controls VCO preciously and reduces the jitter. The CDR circuit is tested using 1Gbps $2^{31}-1$ pseudo random bit sequence (PRBS) input data. The designed CDR circuit shows that is capable of recovering clock and data at rates of 1Gbps. The recovered clock jitter is 7.36ps at 1GHz and the total power consumption is about 12mW. The proposed circuit is implemented using a 0.18um CMOS process under 1.8V supply.

Analysis of the Influence of Mutual Relation of Optical Pulse Frequency Chirp and Kerr Effect on the Mid-Span Spectral Inversion Methods for the Long-Haul Optical Transmission (광 펄스 주파수 첩과 Kerr 효과의 상호 관계가 장거리 광 전송을 위한 MSSI 보상 기법에 미치는 영향 분석)

  • 이성렬;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.898-906
    • /
    • 2002
  • In this paper, we investigated the improvement degree of transmission distance of the various initial frequency chirped optical pulse with 5 dBm initial power dependence on the various bit rate and fiber dispersion coefficient, when MSSI(Mid-Span Spectral Inversion) with the optimal pump power condition is adopted for the compensation method for optical pulse distortion. And we analyzed the influence of mutual relation of optical pulse frequency chirp and Kerr effect on the MSSI methods for the long-haul optical transmission through the computer simulation. We found that the compensation degree of distorted optical pulse varies as a consequence of the variation of combined phase modulation of self phase modulation(Kerr effect) and initial frequency chirp parameter dependence on the fiber dispersion coefficient. And we found that, if the transmission bit rate is increased k times, the dispersion coefficient value of dispersion shift fiber is decreased $2^k$ times so as to be almost the same performance of the transmission system with k times lower bit rate.

Temporal characterization of femtosecond laser pulses using spectral phase interferometry for direct electric-field reconstuction (주파수 위상 간섭계를 이용한 펨토초 레이저 펄스의 시간적 특성연구)

  • 강용훈;홍경한;남창희
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.219-224
    • /
    • 2001
  • Spectral phase interferometry for direct electric-field reconstruction (SPIDER) was fabricated and used to characterize pulses from a Ti:sapphire oscillator. In the SPIDER apparatus, two replicas of the input pulse were generated with a time delay of 200 fs and were upconverted by use of sum-frequency generation with a strongly chirped pulse using a 8-cm-long SFIO glass block at a 30-11m-thick type II BBO (p-BaBz04) crystal. The resulting interferogram was recorded with a UV-enhanced CCD array in the spectrometer. The spectral phase was retrieved by SPIDER algorithm in combination with independently measured pulse spectrum and the corresponding temporal intensity profile was reconstructed with a duration of 19 fs. As an independent cross-check of the accuracy of the method, we compared the interferometric autocorrelation (lAC) signal calculated from the SPIDER data with a separately measured lAC. The conventional, but unjustified, method of fitting a sechz pulse to the autocorrelation deceivingly yielded a pulse duration of 15 fs. This systematic underestimation of the pulse duration affirms the need for a complete characterization method. From the consideration in this paper, we concluded that the SPIDER could provide an accurate characterization of femtosecond pulses. ulses.

  • PDF

Characteristics comparison of food parallel type high frequency resonant inverter by driving signal control method (구동신호 제어기법에 의한 부하병렬형 고주파 인버터의 특성비교)

  • 이봉섭;원재선;김동희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.94-102
    • /
    • 2003
  • This paper describes the load parallel type full-bridge high frequency resonant inverter can be used as power source. Output control method of proposed circuit is compared with pulse frequency modulation(PFM), pulse width modulation(PWM) and pulse phase variation(Phase-Shift). The analysis of the proposed circuit is generally described by using the normalized parameters. The principle of basic operating and the its characteristics are estimated according to the parameters such as switching frequency(${\mu}$), pulse width($\theta$d) the variation of phase angle($\phi$) by three driving signal patterns. Experimental results are presented to verify the theoretical analysis result. In future, Characteristics by three driving signal control method is provided as useful data in case of output control of a power supply in various fields as induction heating application, DC-DC converter etc.

A Two-Phase Separately Randomized Pulse Position PWM Technique with Double-Zero Vector Mode (2중 영 벡터 모드를 갖는 2상 개별 펄스 위치 변조기법)

  • Kim Jung-Geun;Oh Seung-Yeol;Jung Young-Gook;Lim Young-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.739-750
    • /
    • 2004
  • In case while M(modulation index) is more than 0.7, the spectrum of motor voltage and current of a conventional two-phase SRP-PWM scheme are not reduced considerably. To solve the problems of a conventional two-phase SRP-PWM, this paper proposes a two-phase SRP-PWM(DZSRP-PWM) with double zero vector mode which zero vector is selected as V(111) in case of M >0.7, and zero vector is selected as V(000) if M < 0.7. For the validity of the proposed method, the PSIM simulations and experiments were achieved. And the simulation and experiment results show that the voltage and current harmonics all over the modulation index are spread to a wide band area.

Spectrally Phase Coded Waveform Discrimination at 10 GHz for Narrow Band Optical CDMA within 100 GHz Spectral Window

  • Seo, Dong-Sun;Supradeepa, V.R.
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.28-32
    • /
    • 2010
  • We demonstrate binary spectral phase coded waveform discrimination at 10 GHz for narrow band optical code-division multiple-access (NB-OCDMA) via direct electrical detection without using any optical hard-limiter. Only 9 phase-locked, 10 GHz spaced, spectral lines within a 100 GHz spectral window are used for the phase coding. Considerably high contrast ratio of 5 between signal and multiuser access interference noise can be achieved for $4{\times}10\;G\;pulse/sec$ timing coordinated OCDMA at a simple electrical receiver with 50 GHz bandwidth.