• Title/Summary/Keyword: pulse generator

Search Result 445, Processing Time 0.028 seconds

A High-Efficiency 2 GHz Balanced Pulse Generator for Ground Penetrating Radar System (평형구조를 이용한 지표투과레이다용 2 GHz 대역 고효율 펄스발생기)

  • Jeong, Heechang;Seo, Munkyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.928-931
    • /
    • 2017
  • This paper presents a 2 GHz pulse generator in balanced configuration for ground penetrating radar(GPR). In order to improve the input and output matching, the pulse generator is designed in balanced configuration with $90^{\circ}$ hybrid couplers. The designed pulse generator was fabricated using PCB process. The fabricated pulse generator draws 1 mA current from a 5 V power supply with 27.6 % efficiency. The measured output voltage swing is $3.7V_{pp}$ at 100 MHz pulse repetition frequency(PRF). The pulse width is 2 ns and the input and output return loss is more than 10 dB at the operating frequency of 1.7~2.6 GHz.

The Impulse Output Characteristics using Cascading Method of Compact Transformer (소형트랜스의 Cascading 방식을 적용한 임펄스 출력특성)

  • Joung, Jong-Han;Kim, Whi-Young;Hong, Jung-Hwan;Park, Koo-Ryul;Kim, Hee-Je;Cho, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1865-1867
    • /
    • 2000
  • The pulse power system has been widely used to many applications. such as E/P(Electrostatic Precipitator), DeNOx/DeSOx power system, ozon generator. etc. A pulse energy efficiency for load depend on the rising time, peak value, pulse duration, impedance matching. etc. The pulse generator generally required for short pulse duration, high peak value was forced to consider its size and economy. In this study, developing a compact pulse generator that applied for Cascading method to be made of two pulse transformer, we compared cascading voltage with no cascading one by applying the pulse energy to load.

  • PDF

Marx Generator Implementation Using IGBT Stack (IGBT 스택을 이용한 Marx Generator 구현)

  • Kim, J.H.;Min, B.D.;Kim, J.S.;Rim, G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.507-510
    • /
    • 2005
  • High voltage pulse power supply using Marx generator and solid-state switches is proposed in this study. The Marx generator is composed of 12 stages and each stage is made of IGBT stack, two diode stacks, and capacitor. To charge the capacitors of each stage in parallel, inductive charging method is used and this method results in high efficiency and high repetition rates. It can generate the pulse voltage with the following parameters: Voltage: up to 120kv Rising time: sub ${\mu}S$ Pulse width: up to $10{\mu}S$, Pulse repetition rate: 1000pps The proposed pulsed power generator uses IGBT stack with a simple driver and has modular design. So this system structure gives compactness and easiness to implement total system. Some experimental results are included to verify the system performances in this paper.

  • PDF

Study on Timing Characteristics of High-Voltage Pulse Generation with Different Charging Voltages

  • Lee, Ki Wook;Kim, Jung Ho;Oh, Sungsup;Lee, Wangyong;Kim, Woo-Joong;Yoon, Young Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 2018
  • The time synchronization of each sub-unit of a pulsed generator is important to generate an output high-power radio frequency (RF) signal. To obtain the time synchronization between an input RF signal fed by an external source and an electron beam produced by an electric pulse generator, the influence of different charging voltages on a delay and a rise time of the output pulse waveform in the electric pulse generator should be carefully considered. This paper aims to study the timing characteristics of the delay and the rise time as a function of different charging voltages with a peak value of less than -35 kV in the high-voltage pulse generator, including a trigger generator (TG) and a pulse-forming line (PFL). The simulation has been carried out to estimate characteristics in the time domain, in addition to their output high-voltage amplitude. Experimental results compared with those obtained by simulation indicate that the delay of the output pulses of the TG and PFL, which are made by controlling the external triggering signal with respect to different charging voltages, is getting longer as the charging voltage is increasing, and their rise times are inversely proportional to the amplitude of the charging voltage.

A Comparative Study of Transistor and RC Pulse Generators for Micro-EDM of Tungsten Carbide

  • Jahan, Muhammad Pervej;Wong, Yoke San;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.3-10
    • /
    • 2008
  • Micro-electrical discharge machining (micro-EDM) is an effective method for machining all types of conductive materials regardless of hardness. Since micro-EDM is an electro-thermal process, the energy supplied by the pulse generator is an important factor in determining the effectiveness of the process. In this study, an investigation was conducted on the micro-EDM of tungsten carbide (WC) to compare the performance of transistor and resistance/capacitance (RC) pulse generators in obtaining the best quality micro-hole. The performance was measured by the machining time, material removal rate, relative tool wear ratio, surface quality, and dimensional accuracy. The RC generator was more suited for minimizing the pulse energy, which is a requirement for fabricating micro-parts. The smaller-sized debris formed by the low-discharge energy of RC micro-EDM could be easily flushed away from the machined zone, resulting in a surface free of burrs and resolidified molten metal. The RC generator also required much less time to obtain the same quality micro-hole in WC. Therefore, RC generators are better suited for fabricating micro-structures, producing good surface quality and better dimensional accuracy than the transistor generators, despite their higher relative tool wear ratio.

Generation of a High Voltage Pulse of 50 ns Pulse Duration using a Helical Blumlein Pulse Forming Line (나선형 블룸라인 PFL을 이용한 50 ns 펄스폭의 고전압 펄스 발생)

  • Roh, Youngsu;Jin, Yun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.786-791
    • /
    • 2013
  • A high voltage pulse generator based on the Blumlein pulse forming line (PFL) was fabricated to produce a voltage pulse whose peak value is ~300 kV and pulse duration is ~50 ns. Three cylindrical electrodes, such as inner, middle, and outer electrodes, are concentrically placed to make a compact PFL. To increase the pulse duration of the output pulse without any change of the size of the generator, the middle electrode is replaced by a helical strip electrode. To determine the radius of the helical electrode, the impedance of the helical Blumlein PFL is calculated using an approximate formula where the dispersive property of the helical Blumlein PFL is not considered. The dependence of the impedance on the frequency is computed by a commercial program. The number of turns in the helical electrode is decided to provide a demanded pulse duration. The experimental result shows that the helical Blumlein PFL is capable of making a high voltage pulse of ~50 ns pulse duration.

Design of the TDMG pulse generator for ultra-wideband systems (UWB 시스템을 위한 TDMG 펄스 발생기의 설계)

  • Park Jin-Hwan;Bae Bag Geun;Ko Young Eun;Bang Sung Il
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.27-30
    • /
    • 2004
  • This paper has been designed the TDMG(Time Delay Multiple Gaussian) pulse generator for UWB systems and analyzed the characteristics of UWB impulse. Composite two equal Gaussian pulses in a difference time lag, and then investigated TDMG pulse and modeled mathematically. Designed the TDMG pulse generator by ADS(Advanced Design System) to embody by using actual element with such mathematical model. As well as, this paper finally proved an excellence of the TDMG pulse generator by performing analysis through simulation.

  • PDF

Pulse Generator Using Series-Connected Boost Converter (승압형 컨버터의 직렬 배열에 의한 펄스전압 발생회로)

  • 백주원;유동욱;김태진;류명효;조기연;김흥근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.170-170
    • /
    • 2003
  • This paper introduces an improved pulse generator using power semiconductors and L-C circuit. The proposed circuit consists of the series connected boost converter structure. In the presented circuits, high voltage pulse is generated by series-connection of capacitors and IGBTs. The charging of capacitors and voltage balance of IGBTs are obtained automatically. To verify the proposed circuit, 1.8㎸, 40A pulse generator is manufactured and tested.

A Study on Optimization of Compact High-voltage Generator Based on Magnetic-core Tesla Transformer

  • Jeong, Young-Kyung;Youn, Dong-Gi;Lee, Moon-Qee
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1349-1354
    • /
    • 2014
  • This paper presents a compact and portable high-voltage generator based on magnetic-core Tesla transformer for driving an UWB high power electromagnetic source. In order to optimize the performance of the high-voltage generator, a novel open-loop cylindrical magnetic-core adopting the quad-division lamination structure is proposed and manufactured. The designed high-voltage generator using the proposed magnetic core has a battery-powered operation and compact size of $280mm{\times}150mm$ in length and diameter, respectively. The high-voltage generator can produce a voltage pulse waveform with peak amplitude of 450 kV, a rise time of 1.5 ns, and pulse duration of 2.5 ns at the 800 V input voltage.

Theoretical Study of the Circuits for Device of the High Voltage Pulse Generator (고전압 펄스 발생 장치의 회로에 관한 이론적 연구)

  • Kim, Young-Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.99-108
    • /
    • 2013
  • The high-voltage pulse generator is consist of transformers of fundamental wave and harmonic waves, and shunt capacitances. The pulse has the fundamental wave and the harmonic waves that have been increased as a series circuit by the transformers to make high voltage pulse. This paper shows that pulse generator circuit is analyzed using Miller's theorem and network theory(ABCD Matrix) and simulated in frequency and time domain using Matlab program. The output voltage of pulse were obtained to 2.5kHz, 1.8kV. Output pulse voltage increases as $L_m$ increases in low voltage circuit. In high voltage circuit, outer capacitors are related to frequency band pass characteristics.