• Title/Summary/Keyword: pulse generation

Search Result 498, Processing Time 0.024 seconds

Time Pickoff method using an Automatic Gain Control (자동 이득 조절(AGC) 기반의 Time pickoff 회로)

  • Lim, Han-Sang
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.80-85
    • /
    • 2011
  • A time-pickoff circuit used for time measurement suffers from a timing error due to the dependence of the generation time of a timing pulse on the size of the input signal, i.e., time walk. In this study, a time-pickoff method, which employs an automatic gain control (AGC) circuit, is proposed for reducing the timing error. The AGC circuit is added to the input of the comparator, and it renders the sizes of input signals of the comparator relatively uniform. The performance of the proposed time-pickoff method is analyzed using the SPICE simulation, and experiments are performed to confirm the analytical results. The measured time walk is reduced to 2.000 ns by 65% for input signals with a dynamic range of 20 dB as compared to a typical leading-edge discriminator.

The Effect of Repetitive Transcranial Magnetic Stimulation-Induced Proprioceptive Deafferentation to Ipsilateral and Contralateral Motor Evoked Potentials (반복적 경두개자기자극을 통한 고유감각 구심로 차단이 동측 및 반대측 운동유발전위에 미치는 영향)

  • Kim, Min-Jeong;Lee, Kyoung-Min;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.2
    • /
    • pp.158-162
    • /
    • 2006
  • Background: It has been proposed that proprioceptive input can modulate neural excitability in both primary motor cortices (M1) simultaneously, although direct evidence for this is still lacking. Previous studies showed that proprioceptive accuracy of one hand is reduced after the application of one-Hz repetitive transcranial magnetic stimulation (rTMS) for 15 minutes over the contralateral somatosensory cortex. The aim of this study was to investigate the effect of rTMS-induced central proprioceptive deafferentation to excitability of both M1 as reflected in ipsilateral and contralateral motor evoked potentials (MEP). Methods: MEPs of both abductor pollicis bravis (APB) muscles were recorded using single-pulse TMS over right M1 in seven healthy subjects. Immediately after one-Hz rTMS was applied for 15 minutes over the right somatosensory cortex, the MEP measurement was repeated. The proprioceptive function of the left thumb was assessed, before and after rTMS, using a position-matching task. Results: There was an increase in ipsilateral MEP after the rTMS: whereas no MEPs were recorded on the ipsilateral hand before the rTMS, MEPs were recorded in both ipsilateral and contralateral hand in three of seven subjects. At the same time, the mean log amplitude was reduced and the mean latency was prolonged in the contralateral MEP. Conclusions: rTMS-induced central proprioceptive deafferentation reduces the MEP generation in the contralateral hand, and fascilitates that in the ipsilateral hand. A further study with a larger sample seems warranted to confirm this finding and to elucidate the neurophysiology underlying it.

  • PDF

A Technique for Generation of Template Signal using Stable Minimum-Phase ARMA System Modeling for Coherent Impulse Communication Systems (안정성을 갖는 최소 위상 ARMA시스템 모델링을 이용한 코히어런트 임펄스 통신 수신단 참조 신호 발생 기법)

  • Lee Won Cheol;Park Woon Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1606-1616
    • /
    • 2004
  • This paper introduces a technique for generating an appropriate template signal via modeling of minimum-phase stable ARMA (Auto-Regressive Moving Average) system for coherent impulse communication systems. It has been well known that the transmitted impulse signal becomes deformed because of dispersive and resonant characteristics. Accordingly, in spite of using ideal template signal at the correlator, these impairments degrade overall performance attributed to low level of coherence. To increase the degree of coherence, our proposed scheme realizes A3U system derived by Gaussian pulse signal, which simulates the overall characteristic of transfer function in between transmit and receive wideband antennas so as to generate an appropriate template signal in a form of output. The performance of proposed scheme will be shown in results from computer simulations to verify its affirmative impact on impulse communication system with regarding several distinctively shaped antennas.

A Development of an Industrial SPMSM Servo Drive System using TMS320F2812 DSP (TMS320F2812 DSP를 이용한 산업용 SPMSM 정밀 제어시스템 개발)

  • Kim Min-Heui;Lim Tae-Hoon;Jeong Jang-Sik;Kim Seong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.138-147
    • /
    • 2005
  • This paper presents a SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) servo drive system using high performance TMS320F2812 DSP for the industrial application. The DSP(Digital Signal Processor) Controller enables an enhanced real time algorithm and cost-effective design intelligent for only exclusively motor drives which can be yield enhanced operation, fewer system components, lower control system cost, increased efficiency and high performance. The suggested system contain speed and current sensing circuits, SVPWM(Space Vector Pulse Width Modulation) and I/O interface circuit. The developed servo drive control system showns a good response characteristics results and high performance features in general purposed 400[w] machine. This system can achieve cost reduction and size minimization of controllers.

Analysis on the Discharge Characteristics of New Cell Structure for Luminous Efficacy Improvement in an AC Plasma Display Panel (교류형 플라즈마 표시키의 발광 효율 개설을 위한 실 구조의 방전 특성 분석)

  • Bae, Hyun-Sook;Whang, Ki-Woong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.7-13
    • /
    • 2008
  • Through two-dimensional numerical simulations, we analyzed the effects of new cell structure for the luminous efficacy improvement in an ac plasma display panel. In the new structure with 5 electrodes, two auxiliary electrodes are arranged between X and Y electrodes with long gap. Through the application of adequate auxiliary pulse on the address electrode, the luminous efficacy in the new cell structure showed the improvement of 52[%] in comparison with that of conventional cell structure with short gap between X and Y electrodes. Consequently, as the short gap discharge between auxiliary electrodes decreases and the long gap discharge between X and Y electrodes increases, the result of VUV generation efficacy shows higher improvement. The reliability of simulation result could he confirmed by the experimental result in the test panel.

Performance Analysis of load simulator interconnected with Power Quality Compensator (전력품질 보상기와 부하모의장치의 연계시험 분석)

  • Bae, Byung-Yeol;Cho, Yun-Ho;Park, Yong-Hee;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper describes a load simulator with power recovery capability, which is based on the voltage source converter-inverter set. The load simulator can save the electric energy that should be consumed to test the operation and performance of the power quality compensator and the power equipment. The load simulator consists of a converter-inverter set with a DSP controller for system control and PWM pulse generation. The converter operates as a universal load to model the linear load and the non-linear load, while the inverter feed the energy back to the power source with harmonic compensation. the performance of proposed load simulator was analyzed with scaled-model experiment, interconnected with the active power filter. The experimental results confirms that the proposed load simulator can be utilized to test the performance of active power filter.

Inhibitory Effects of (-) Epigallocatechin Gallate and Quercetin on High Glucose-induced Endothelial Cytotoxicity

  • Choi Yean Jung;Kwon Hyang Mi;Choi Jung Suk;Bae Ji Young;Kang Sang Wook;Lee Sang Soo;Lee Yong Jin;Kang Young Hee
    • Nutritional Sciences
    • /
    • v.9 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • Functional damage to microvascular endothelial cells by hyperglycemia is thought to be one of the critical risk factor.; in the impaired wound healing seen with diabetes mellitus. It is also thought that oxidative stress plays a significant role in this endothelial cell dysfunction. The present study examined the differential effects of flavonoids on endothelial cell dysfunction under high glucose conditions. Human endothelial cells exposed to 30 mmol/L glucose for 7 d were pre-treated with various flavonoids and pulse-treated with 0.2 mmol/L $H_2O_2$ for 30 min. High glucose markedly decreased cell viability with elevated oxidant generation and nuclear condensation. $H_2O_2$ insult exacerbated endothelial cytotoxicity due to chronic exposure to high glucose. (-)Epigallocatechin gallate and quercetin improved glucose-induced cell damage with the disappearnnce of apoptotic bodies, whereas apigenin intensified the glucose cytotoxicity. In addition, cell viability data revealed that these flavonoids of (-)epigallocatechin gallate and quercetin substantially attenuated both high glucose- and $H_2O_2$- induced dual endothelial damage. These results suggest that (-)epigallocatechin gallate and quercetin may be beneficial agents for improving endothelial cell dysfunction induced by high glucose and may prevent or reduce the development of diabetic vascular complications.

A Study on a KTP Crystal Laser System for a Cancer Using P.D.T. (KTP 크리스탈을 이용한 PDT용 레이저 시스템 개발)

  • Kim, Byoung-Mun;Nam, Hyo-Duk;Kim, Byoung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.631-634
    • /
    • 2004
  • The method that exists in Photodynamic Therapy uses Photosensibility drug strongly Influencing tumour accumulation together with photochemical laser effect and makes the structure of tumour be localized and become extinct. The intracavity transformation of the Nd :YAP main radiation 1079 nm was Raman converted in barium nitrate crystal and the Stokes frequency (1216 nm) was doubled using KTP or RTA crystals. The LiF or Cr:YAG crystals are used for the Q-switch. The radiation Parameters were obtained at 100 Hz pump repetition frequency. The average power at 608 nm radiation with LiF and KTP was 700 mW at multi-mode generation. The 3-6 single 10-15 ns pulses were generated during one cycle of pumping. The doubling efficiency with RTA was two times more than with KTP. The cells of Ehrlich adenocarcinoma (0.1 ml) were i.m. implanted in hind thighs of ICR white non-imbred mice. The cells were preliminarily diluted in medium 199 in the ratio of 1 to 5. HpD was intravenous administered in a dose of 10 mg/kg. The left clean-shaven hind leg was irradiated with laser light 21-27 hours after the administration of the preparation. The right non-Irradiated leg of each animal served as a control. The animals with the transplanted tumor that were not injected with HpD sewed as a control to estimate the complex effect (HpD+ irradiation). Before the administration of HpD and on 3 and 4 days after irradiation the tumor size was measured and the percent of the tumor growth inhibition was calculated. The results of animal treatments has shown high efficiency of PDT method for cancer treatment by means 0.608 m high power pulse solid state laser.

  • PDF

An exploratory study of stress wave communication in concrete structures

  • Ji, Qing;Ho, Michael;Zheng, Rong;Ding, Zhi;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2015
  • Large concrete structures are prone to cracks and damages over time from human usage, weathers, and other environmental attacks such as flood, earthquakes, and hurricanes. The health of the concrete structures should be monitored regularly to ensure safety. A reliable method of real time communications can facilitate more frequent structural health monitoring (SHM) updates from hard to reach positions, enabling crack detections of embedded concrete structures as they occur to avoid catastrophic failures. By implementing an unconventional mode of communication that utilizes guided stress waves traveling along the concrete structure itself, we may be able to free structural health monitoring from costly (re-)installation of communication wires. In stress-wave communications, piezoelectric transducers can act as actuators and sensors to send and receive modulated signals carrying concrete status information. The new generation of lead zirconate titanate (PZT) based smart aggregates cause multipath propagation in the homogeneous concrete channel, which presents both an opportunity and a challenge for multiple sensors communication. We propose a time reversal based pulse position modulation (TR-PPM) communication for stress wave communication within the concrete structure to combat multipath channel dispersion. Experimental results demonstrate successful transmission and recovery of TR-PPM using stress waves. Compared with PPM, we can achieve higher data rate and longer link distance via TR-PPM. Furthermore, TR-PPM remains effective under low signal-to-noise (SNR) ratio. This work also lays the foundation for implementing multiple-input multiple-output (MIMO) stress wave communication networks in concrete channels.

MIT characteristic of VO2 thin film deposited by ALD using vanadium oxytriisopropoxide precursor and H2O reactant

  • Shin, Changhee;Lee, Namgue;Choi, Hyeongsu;Park, Hyunwoo;Jung, Chanwon;Song, Seokhwi;Yuk, Hyunwoo;Kim, Youngjoon;Kim, Jong-Woo;Kim, Keunsik;Choi, Youngtae;Seo, Hyungtak;Jeon, Hyeongtag
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.5
    • /
    • pp.484-489
    • /
    • 2019
  • VO2 is an attractive candidate as a transition metal oxide switching material as a selection device for reduction of sneak-path current. We demonstrate deposition of nanoscale VO2 thin films via thermal atomic layer deposition (ALD) with H2O reactant. Using this method, we demonstrate VO2 thin films with high-quality characteristics, including crystallinity, reproducibility using X-ray diffraction, and X-ray photoelectron spectroscopy measurement. We also present a method that can increase uniformity and thin film quality by splitting the pulse cycle into two using scanning electron microscope measurement. We demonstrate an ON / OFF ratio of about 40, which is caused by metal insulator transition (MIT) of VO2 thin film. ALD-deposited VO2 films with high film uniformity can be applied to next-generation nonvolatile memory devices with high density due to their metal-insulator transition characteristic with high current density, fast switching speed, and high ON / OFF ratio.