• Title/Summary/Keyword: pullulan

Search Result 125, Processing Time 0.034 seconds

Molecular Cloning and Characterization of Maltogenic Amylase from Deinococcus geothermalis (Deinococcus geothermalis 유래 maltogenic amylase의 유전자 발현 및 특성확인)

  • Jung, Jin-Woo;Jung, Jong-Hyun;Seo, Dong-Ho;Kim, Byung-Yong;Park, Cheon-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.369-374
    • /
    • 2011
  • A putative maltogenic amylase gene (DGMA) was cloned from the Deinococcus geothermalis DSM 11300 genome using the polymerase chain reaction. The gene encoded 608 amino acids with a predicted molecular mass of 68,704 Da. The recombinant DGMA was constitutively expressed using the pHCXHD plasmid. As expected, the recombinant DGMA hydrolyzed cyclodextrins and starch to maltose and pullulan to panose by cleaving the ${\alpha}$-(1,4)-glycosidic linkages, as observed for typical maltogenic amylases. Characterization of the recombinant DGMA revealed that the highest maltogenic amylase activity occurred at $40^{\circ}C$ and pH 6.0. The half-life of catalytic activity at $65^{\circ}C$ and $55^{\circ}C$ were 8.2 min and 187.4 min, respectively. DGMA mainly hydrolyzed ${\beta}$-cyclodextrin, soluble starch, and pullulan and its efficient ratio of those substrates was 9:4.5:1.

Production and Characteristics of Pullulanase from Bacillus cereus (Bacillus cereus에 의한 Pullulanase의 생산 및 특성)

  • 정만재;임계숙;조대선;우정숙
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.409-416
    • /
    • 1992
  • The optimum cultural temperature and time for the pullulanase production by Bacillus cereus were $15^{\circ}C$ and 72 hrs, respectively. The addition of casein, nutrient broth and egg albumin to the basal medium, respectively, increased greatly the enzyme production. The enzyme was purified by ammonium sulfate fractionation, CM-cellulose and DEAE-cellulose column chromatographies. The specific activity of the purified enzyme was 29.09 U/mg protein and the yield of enzyme activity was 17.1% The purified enzyme showed a single band on polyacrylamide disc gel electrophoresis and its molecular weight was estimated to be 61,000 by SDSpolyacrylamide disc gel electrophoresis. The isoelectric point for the purified enzyme was pH 7.0. The optimum temperature and pH were $40^{\circ}C$ and 6.5. The purified enzyme was stable below $35^{\circ}C$ and in the pH range of 6.5-11.0. It was greatly inhibited by $Ag^{+}$, $Hg^{2+}$ and $Zn^{2+}$, and its thermal stability was increased by the addition of $Ca^{2+}$ Among various substrates, pullulan was favorably hydrolyzed by the purified enzyme and the hydrolysis product 011 pulluIan was maltotriose.

  • PDF

Physicochemical Characterization and Carcinoma Cell Interaction of Self-Organized Nanogels Prepared from Polysaccharide/Biotin Conjugates for Development of Anticancer Drug Carrier

  • Park Keun-Hong;Kang Dong-Min;Na Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1369-1376
    • /
    • 2006
  • Self-organized nanogels were prepared from pullulan/biotin conjugates (PU/Bio) for the development of an effective anticancer drug delivery system. The degree of biotin substitution was 11, 19, and 24 biotin groups per 100 anhydroglucose units of pullulan. The physicochemical properties of the nanogels (PU/Bio1, 2 and 3) in aqueous media were characterized by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The mean diameter of all the samples was less than 300 nm with a unimodal size distribution. The critical aggregation concentrations (CACs) of the nanoparticles in distilled water were $2.8{\times}10^{-2},\;1.6{\times}10^{-2}$, and $0.7{\times}10^{-2}mg/ml$ for the PU/Bio1, 2, and 3, respectively. The aggregation behavior of the nanogels indicated that biotin can perform as a hydrophobic moiety. To observe the specific interaction with a hepatic carcinoma cell line (HepG2), the conjugates were labeled with rhodamine B isothiocyanate (RITC) and their intensities measured using a fluorescence microplate reader. The HepG2 cells treated with the fluorescence-labeled PU/Bio nanoparticles were strongly luminated compared with the control (pullulan). Confocal laser microscopy also confirmed internalization of the PU/Bio nanogels into the cancer cells. Such results demonstrated that the biotin in the conjugate acted as both a hydrophobic moiety for self-assembly and a tumor-targeting moiety for specific interaction with tumor cells. Consequently, PU/Bio nanogels would appear to be a useful drug carrier for the treatment of liver cancer.

Relationship between Structure and Function of Cyclomaltodextrinases in Their Multispecificity (다양한 기질 특이성을 갖는 $\alpha$-Amylase계열 Cycloma1todextrin 분해효소들의 구조와 기능간의 관계)

  • 김정완;조희연;김영배;박관화
    • The Microorganisms and Industry
    • /
    • v.27 no.1
    • /
    • pp.2-17
    • /
    • 2001
  • Cyclomaltodextrinase(CDase, EC 3.2.1.54), maltogenic amylase(EC 3.2.1.133). neopullulanase(EC 3.2.1.135)는 cyclomaltodextrin(CD), pullulan 및 전분을 가수분해하는 효소들이다. 이 효소들은 $\alpha$-1,4-Ο-glycosidic 결합에 작용하여 CD와 전분을 말토오스로 pullulan을 panose로 가수분해할 뿐만 아니라 올리고당들을 다양한 당 수용체 분자들의 C-3, C-4. C-6 수산기로 전이시키는 활성도 갖고 있다. 이러한 특성들은 기존의 $\alpha$-amylase를 비롯한 판수화물 분해효소들과 뚜렷이 구별되는 것으로 전분 분해효소들의 분류체계에 새로운 기준점을 제시한다고 하겠다. 본 총설에서는 CDase, maltogenic amylase, neopullulanase처럼 pullulan이나 전분보다 CD를 훨씬 더 잘 분해하는 효소들과 Thermoactinomyces vulgaris amylase II(TVA II)처럼 CD를 분해하기는 하나 pullulan을 더 잘 분해하는 효소들의 생화학적, 효소적, 구조적 특성들을 종합하여 소개하고자 하였다. 이 효소들은 40~60% 정도로 아미노산 서열이 동일하고, 세포 내에 존재하며, 분자량이 62~90 kDa로 $\alpha$-amylase보다 다소 크다. 아미노산 서열 비교분석 및 maltogenic amylase와 TVA II 등의 3차구조 분석 결과, 이 효소들은 아미노 말단에 보통 $\alpha$-amylase에는 존재하지 않는 약 130개 아미노산으로된 영역을 갖고 있어 이를 매개로 이합체를 형성할 수 있는 것으로 나타났다. 이합체-단위체 평형은 염 농도, 효소 농도, 산도 등에 의해 조절되고 단위체와 이합체 모두 효소환성을 갖고 있으나, 기질 특이성이 다르며 단위체는 전분을, 이합체는 CD를 선호하는데 이는 이합체 형성 시 활성부위의 구조적 변화에 따른 것으로 분석되었다. 본 총설에서는 CD 분해효소들의 다양한 기질 특이성을 올리고머 형성 등의 구조적 특성과 관련하여 논함으로써 관련 효소들의 분류체계를 보다 명확히 할 수 있는 자료를 제공하고자 하였으며, 이러한 효소들의 생리적 기능 및 산업적 이용에 대해 제안하고자 하였다.

  • PDF

Effect of Extracellular Polymeric Substances(EPS) on the Biosorption of Lead by Microorganisums (납의 생물흡착에 미치는 세포외고분자물질의 영향)

  • 서정호;김동석;송승구
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 1999
  • Comparison of lead removal characteristics between two strains, Aureobasidium pullulans and Saccharomyces cerevisiae, and effects of extracellular polymeric substances(EPS) excreted by microorganisms on the removal of lead were investigated. The capacity of lead biosorption to A. pullulans which had EPS was increased as the storage time of the cells increased, due to the increased amounts of excreted EPS. When the EPS were removed from A. pullulans cells, the amounts of adsorbed lead were very small(10% of the cell with EPS). In the case of s. cerevisiae which had no EPS, the lead removal capacity was nearly constant with storage time except early stage, but the spending time to reach an equilibrium state decreased with increasing storage time because of lowering the function of cell membrane. Therefore, it seems that the phenomena of lead biosorption were remarkably affected by the presence of extracellular polymeric substances.

  • PDF

Succinylated Pullulan Acetate Microspheres for Protein Delivery

  • Woo, Young-Rong;Seo, Seog-Jin;Na, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.323-329
    • /
    • 2011
  • In order to develop new protein carrier replacing poly(DL-lactic acid-co-glycolic acid) (PLGA) microspheres, succinylated pullulan acetate (SPA) was investigated to fabricate a long term protein delivery carrier. SPA microspheres loaded with lysozyme (Lys) as a model protein drug were prepared by a water/oil/water (W/O/W) double emulsion method. An acidity test of SPA copolymers after hydrolysis was performed to estimate the change of protein stability during releasing proteins from the microspheres. There was no pH change of SPA copolymers, but pH of PLGA polymers after hydrolysis was significantly decreased to around pH 2, indicating that the long-term stability of proteins released from SPA microspheres can be guaranteed. Loading efficiency of proteins into SPA microspheres was three times higher than those into conventional PLGA microspheres, indication of inducing stronger charge interaction between proteins and succinyl groups in SPA microspheres. Although initial burst behaviors were monitored in Lys-loaded SPA microspheres due to relatively strong hydrophilic succinyl segments in SPA microspheres, initial burst issues would be circumvented if the ratio of charge density of succinyl moieties and hydrophobic acetate groups is harmonically controlled. Therefore, in this study, a new attempt of protein delivery system was made and functional SPA was successfully confirmed as a new protein carrier.

The Regulation of Sugar Metabolism in Huangguan Pears (Pyrus pyrifolia Nakai) with Edible Coatings of Calcium or Pullulan during Cold Storage

  • Kou, Xiaohong;Jiang, Bianling;Zhang, Ying;Wang, Jun;Xue, Zhaohui
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.898-911
    • /
    • 2016
  • Sugars play many important roles in plant metabolism and directly influence fruit quality. The effects of two edible coatings, 2% calcium chloride and 1% pullulan, on sugar metabolism in postharvest Huangguan pear fruit were investigated during cold storage. The respiration rate, sugar content and composition, sucrose metabolism enzyme activities [acid invertase (AIV), neutral invertase (NI), sucrose synthase (SS), and sucrose phosphate synthase (SPS)] and expression of the AIV gene were analyzed during storage at $0^{\circ}C$ for 210 days. Coating treatments slowed the decrease of sucrose and hexose, the respiration rate, and the activities of AIV, NI, SS and SPS, thus maintaining high total soluble solids (TSS) and titratable acid (TA) contents in the fruit. There were no significant differences in AIV expression or activity between the treated and control groups of fruits. Both of the coatings could inhibit the activities of sucrose-cleaving enzymes, thus slowing the decrease of sugar content and maintaining high fruit quality during cold storage.

Phylogeny of the Yeast Species Isolated from Wild Tiger Lily (Lilium lancifolium Thunb.) (야생 참나리(Lilium lancifolium Thunb.)로부터 분리한 효모의 분자계통학적 분석)

  • Kim, Jong-Shik;Kim, Dae-Shin
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.149-154
    • /
    • 2015
  • BACKGROUND: Yeast isolates associated with the leaves, stems, and flowers of the tiger lily needed to be identified using isolation methods that have previously been used effectively in yeast biotechnology. A culture-based approach was necessary for the isolation of many yeast strains associated with tiger lily. METHODS AND RESULTS: In this study, the homogenized leaves, stems, and flowers of tiger lily were spreaded onto GPY medium containing chloramphenicol, streptomycin, Triton X-100, and L-sorbose. A total of 82 yeast strains from the leaves, 94 and 97 yeast strains from the stems and flowers were isolated, respectively. Yeast isolates were identified by phylogenetic analysis based on internal transcribed spacer region sequencing. The yeast species isolated from the leaves comprised of 31 isolates of the genus Pseudozyma, 28 of Aureobasidium pullulans, and 11 of the genus Cryptococcus. Those isolated from the stems comprised of 40 of A. pullulans and 11 of Cryptococcus, and 95 of A. pullulans While, 1 isolate each of the genera Rhodotorula and Metschnikowia were isolated from the flowers. CONCLUSION: We identified site-specific yeast communities associated with tiger lily. These yeast isolates may have high potential for application in the field of biotechnology.