Browse > Article
http://dx.doi.org/10.5338/KJEA.2015.34.2.13

Phylogeny of the Yeast Species Isolated from Wild Tiger Lily (Lilium lancifolium Thunb.)  

Kim, Jong-Shik (Gyeongbuk Institute for Marine Bio-Industry)
Kim, Dae-Shin (World Heritage and Mt. Hallasan Research Institute)
Publication Information
Korean Journal of Environmental Agriculture / v.34, no.2, 2015 , pp. 149-154 More about this Journal
Abstract
BACKGROUND: Yeast isolates associated with the leaves, stems, and flowers of the tiger lily needed to be identified using isolation methods that have previously been used effectively in yeast biotechnology. A culture-based approach was necessary for the isolation of many yeast strains associated with tiger lily. METHODS AND RESULTS: In this study, the homogenized leaves, stems, and flowers of tiger lily were spreaded onto GPY medium containing chloramphenicol, streptomycin, Triton X-100, and L-sorbose. A total of 82 yeast strains from the leaves, 94 and 97 yeast strains from the stems and flowers were isolated, respectively. Yeast isolates were identified by phylogenetic analysis based on internal transcribed spacer region sequencing. The yeast species isolated from the leaves comprised of 31 isolates of the genus Pseudozyma, 28 of Aureobasidium pullulans, and 11 of the genus Cryptococcus. Those isolated from the stems comprised of 40 of A. pullulans and 11 of Cryptococcus, and 95 of A. pullulans While, 1 isolate each of the genera Rhodotorula and Metschnikowia were isolated from the flowers. CONCLUSION: We identified site-specific yeast communities associated with tiger lily. These yeast isolates may have high potential for application in the field of biotechnology.
Keywords
Aureobasidium pullulans; ITS gene; Tiger lily; Yeast;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Botha, A. (2011). The importance and ecology of yeasts in soil. Soil Biology &. Biochemistry, 43(1), 1-8.   DOI   ScienceOn
2 Choi, S. C., Kim, M. U., & Kim, J. S. (2013). Selective isolation and phylogeny of the yeast species associated with Aloe vera and Aloe saponaria. Korean Journal of Environmental Agriculture, 32(3), 240-243.   DOI
3 Deak, T. (2009). Ecology and biodiversity of yeasts with potential value in biotechnology. Yeast Biotechnology:Diversity and Applications (Ed. Satyanarayana, T., & Kunze, G.), pp. 151-168. Springer Science + Business Media B.V., Dordrecht, Netherlands.
4 Fonseca, A., & Inacio, J. (2006). Phylloplane yeasts. Biodiversity and Ecophysiology of Yeasts (ed. Rosa, C. A., & Peter, G.), pp. 263-301. Springer, Berlin.
5 Jeknic, Z., Morre, J. T., Jeknic, S., Jevremovic, S., Subotic, A. & Chen, T. H. H. (2012). Cloning and functional characterization of a gene for capsanthin-capsorubin synthase from tiger lily (Lilium lancifolium Thunb. 'Splendens'). Plant and Cell Physiology, 53(11), 1899-1912.   DOI
6 Kim, J. S., Lee, I. K., & Yun, B. S. (2015). A novel biosurfactant production by Aureobasidium pullulans L3-GPY from a tiger lily wild flower, Lilium lancifolium Thunb. PlosOne, 10(4), e0122917.   DOI
7 Leathers, T. D., Rich, J. O., Anderson, A. M., & Manitchotpisit, P. (2013). Lipase production by diverse phylogenetic clades of Aureobasidium pullulans. Biotechnology Letters, 35(10), 1701-1706.   DOI
8 Lee, T. B. (2014). Coloured Flora of Korea, Vol. I, II. Hayangmunsa, Seoul. p. 1828. (In Korean)
9 Lee, W. T. (1996). Coloured Standard Illustrations of Korean Plants, Academy Publishing Co., Seoul. p. 624. (In Korean)
10 Ma, Z. C., Chi, Z., Geng, Q., Zhang, F., & Chi, Z. M. (2012). Disruption of the pullulan synthetase gene in siderophore-producing Aureobasidium pullulans enhances siderophore production and simplifies siderophore extraction. Process Biochemistry, 47(12), 1807-1812.   DOI
11 Maksimova, I. A., Yurkov, A. M., & Chernov I. Y. (2009). Spatial structure of epiphytic yeast communities on fruits of Sorbus aucupaia L. Biology Bulletin, 36(6), 613-618.   DOI
12 Manitchotpisit, P., Skory, C. D., Peterson, S. W., Price, N. P., Vermillion, K. E., & Leathers, T. D. (2012). Poly($\beta$-L-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans. Journal of Industrial Microbiology Biotechnology, 39(1), 125-132.   DOI
13 Mari, M., Martini, C., Spadoni, A., Rouissi, W., & Bertolini, P. (2012). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology & Technology, 73, 56-62.   DOI
14 Raspor, P., & Zupan, J. (2006). Yeast in extreme environments. Biodiversity and Ecophysiology of Yeasts (ed. Rosa, C. A., & Peter, G.), pp. 370-417. Springer, Berlin.
15 Rich, J. O., Manitchotpisit, P., Peterson, S. W., & Leathers, T. D. (2011). Laccase production by diverse phylogenetic clades of Aureobasidium pullulans. Rangsit Journal of Arts & Sciences, 1(1), 41-47.
16 Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology & Evolution, 4(4), 406–425.
17 Singh, R. S., Saini, G. K., & Kennedy, J. F. (2008). Pullulan: Microbial sources, production and applications. Carbohydrate Polymers, 73(4), 515-531.   DOI
18 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology & Evolution, 28(10), 2731-2739.   DOI
19 Tamang, J. P., & Fleet, G. H. (2009). Yeasts diversity in fermented foods and beverages. Yeast Biotechnology: Diversity and Applications (Ed. Satyanarayana, T., & Kunze, G.), pp. 169-198. Springer Science + Business Media B. V., Dordrecht, Netherlands.
20 White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplication and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications (Ed. Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J.), pp. 315-322. Academic Press, San Diego, USA.