• Title/Summary/Keyword: pullout mechanism

Search Result 52, Processing Time 0.03 seconds

An Experimental Study on the Bond Split Mechanism of High Strength Concrete (고강도 콘크리트의 부착할렬기구에 관한 실험적 연구)

  • 장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.129-136
    • /
    • 1999
  • For the prediction of concrete-steel bond ability in reinforced concrete, many countries establish specifications for the pullout test. But these methods hardly to consider many parameters such as strength, shape, diameter and location of steel, concrete restrict condition by loading plate, strength of concrete and cover depth etc, and it is difficult to solve concentration and disturbance of stress. The purpose of this study is to propose a New Ring Test method which can be rational quantity evaluations of bond splitting mechanism. For this purpose, pullout test was carried out to assess the effect of several variables on bond splitting properties between reinforcing bar and concrete. Key variables are concrete compressive strength, concrete cover, bar diameter and rib spacing. Failure mode was examined and maximum bond stress-slip relationships were presented to show the effect of above variables. As the result, it appropriately expressed general characteristics of bond splitting mechanism, and it proved capability for standard test method.

Interfacial Properties of Polypropylene Fiber in High Performance Fiber Reinforced Cement Composites (고인성 섬유보강 복합체 내에서 폴리프로필렌 섬유의 계면 부착성능)

  • Han Byung-Chan;Jeon Esther;Park Wan-Shin;Lee Young-Seak;Hiroshi Fukuyama;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.108-111
    • /
    • 2004
  • The polypropylene(PP) fiber is poised as a low cost alternative for reinforcement in structural applications in comparison with other high performance fibers, such as the polyvinyl-alcohol(PVA), polyethylene, carbon and aramid fiber. The mechanical properties of the composite are strongly determined by the interfacial behavior of fiber and cementitious matrix. The crack bridging mechanism contribute to composite toughness from activation of the fiber-matrix interface where energy is dissipated through debonding of the interface and fiber pullout. In this study, therefore, the pullout behavior of PP fibers is investigated. Experimental work includes the investigation of the interfacial properties, and the composite property. The quantification of interfacial properties, the frictional bond is achieved through single fiber pullout test. A study on the effect of inclination angle on fiber pullout behavior is also conducted.

  • PDF

Characteristics Study by Pullout Test of Compression(JR-2000) Anchor (선단압축형(JR-2000) 앵커의 인발시험에 관한 특성연구)

  • Oh, Myung-Ju;Park, Tae-Young;Ha, Wook-Jai;Kim, Moon-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.819-824
    • /
    • 2005
  • Anchor system is widely used in construction works to support retaining structures. The compression anchor is characterized by excellent mechanism of pullout resistance, as well as less probability of progressive failure than a tension anchor. This paper presents the mechanical characteristics of a newly developed compression anchor(JR-2000). Field tests were performed to investigate characteristics of the pullout resistance of compression anchor.

  • PDF

대구경 소켓경사반력말뚝의 인발거동에 관한 연구

  • 최용규;김상옥;정창규;정성기;김상일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.277-284
    • /
    • 2000
  • Using the large diameter (D = 2,500mm, L = 40m) batter steel pipe piles, designed as compression piles but used as reaction piles during the static compression load test of socketed test piles (D = 1,000mm, L = 40m), static pile load tests for large diameter instrumented rock-socketed piles were performed. The reaction steel pipe piles were driven 20m into the marine deposit and weathered rock layer and then l0m socketed with reinforced concrete through the weathered rock layer and into hard rock layer. Steel pipe and concrete in the steel pile part, and concrete and rebars in the socketed parts were instrumented to measure strains in each part. The pullout amounts of reaction pile heads were also measured with LVDT. During the static pile load test, total compressional load of about 20MN was loaded on the head of test piles, but load above 20MN was not loaded due to lack of loading capacity of loading system. Over the course of the study, maximum pullout amount up to 7mm was measured in the heads of reaction piles when loaded op to 10MN and 1mm of pullout amount was measured. More than 85% of pullout load was transfered in the residual weathered rock layer and about 10% in the soft rock layer, which was somewhat different transfer mechanism in the static compressional load tests.

  • PDF

Experimental Study on Pullout Behavior of Composite Type Ground Anchor (복합형 앵커의 인발거동에 관한 실험적 연구)

  • Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.143-155
    • /
    • 2008
  • Ground anchors are classified depending on the kind of stress the grout is subjected to. If the grout material is subjected to tension then it is classified as tension anchor while when the grout material is subjected to compression it is classified as compression anchor. In this study a composite type anchor that possesses both the tension and compression mechanism was developed. For field tests, strain gauges were installed inside the anchor body in soft: soil. From the strain monitoring results, pull-out resistance mechanism that possesses both tension and compression strain was seen.

High Performance Fiber Reinforced Cement Composites with Innovative Slip Hardending Twisted Steel Fibers

  • Kim, Dong-Joo;Naaman, Antoine E.;El-Tawil, Sherif
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • This paper provides a brief summary of the performance of an innovative slip hardening twisted steel fiber in comparison with other fibers including straight steel smooth fiber, high strength steel hooked fiber, SPECTRA (high molecular weight polyethylene) fiber and PVA fiber. First the pull-out of a single fiber is compared under static loading conditions, and slip rate-sensitivity is evaluated. The unique large slip capacity of T-fiber during pullout is based on its untwisting fiber pullout mechanism, which leads to high equivalent bond strength and composites with high ductility. Due to this large slip capacity a smaller amount of T-fibers is needed to obtain strain hardening tensile behavior of fiber reinforced cementitious composites. Second, the performance of different composites using T-fibers and other fibers subjected to tensile and flexural loadings is described and compared. Third, strain rate effect on the behavior of composites reinforced with different types and amounts of fibers is presented to clarify the potential application of HPFRCC for seismic, impact and blast loadings.

Discrete element modelling of geogrids with square and triangular apertures

  • Chen, Cheng;McDowell, Glenn;Rui, Rui
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.495-501
    • /
    • 2018
  • Geogrid application that has proved to be an effective and economic method of reinforcing particles, is widely used in geotechnical engineering. The discrete element method (DEM) has been used to investigate the micro mechanics of the geogrid deformation and also the interlocking mechanism that cannot be easily studies in laboratory tests. Two types of realistically shaped geogrid models with square and triangle apertures were developed using parallel bonds in PFC3D. The calibration test simulations have demonstrated that the precisely shaped triangular geogrid model is also able to reproduce the deformation and strength characteristics of geogrids. Moreover, the square and triangular geogrid models were also used in DEM pull-out test simulations with idealized shape particle models for validation. The simulation results have been shown to provide good predictions of pullout force as a function of displacement especially for the initial 30 mm displacement. For the granular material of size 40 mm, both the experimental and DEM results demonstrate that the triangular geogrid of size 75 mm outperforms the square geogrid of size 65 mm. Besides, the simulations have given valuable insight into the interaction between particle and geogrid and also revealed similar deformation behavior of geogrids during pullout. Therefore, the DEM provides a tool which enable to model other possible prototype geogrid and investigate their performance before manufacture.

An Analytical Study on the Pullout Properties of Axial Bars Embedded in Massive Concrete (매시브 콘크리트에 배근된 축방향 주철근의 인발특성에 관한 해석적 연구)

  • 장일영;송재호;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.194-200
    • /
    • 1993
  • The objective of this study is to clarify analytically the pullout behavior of axial bars from a footing. The bond stress-slip model obtained from the results by the finite element method as well as the pullout tests in massive concrete was used in order to evaluate the slip of bars from the footing. Also, the process of bond mechanism was taken into consideration on order to express the deterioration of bond stress along bars, The shape and magnitude of bond stress distribution depends upon each loading steps. Using equilibrium equation of axial force, $\tau$-S relationship and $\sigma$s-$\varepsilon$s relationship, the differential equations of each loading steps are derived. Applying both boundary and equilibrium conditions to the equations, the amount of slip could be determined. Calculated values on the basis of proposed method evaluation of the slip of bars have a good agreement with the experimental results.

  • PDF

Bond Properties of Structural Poly Vinyl Alcohol Fiber in Cement Based Composites with Metakaolin and Silica Fume Contents (메타카올린 및 실리카퓸 첨가율에 따른 구조용 PVA 섬유와 시멘트 복합재료의 부착특성)

  • Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.9-16
    • /
    • 2012
  • In this study, the effect of metakaoline and silica fume on the bond performances of structural polyvinyl alcohol (PVA) fiber in cement mortar, including bond strength, interface toughness, and microstructure analysis are presented. Metakaoline and silica fume contents ranging from 0 % to 15 % are used in the mix proportions. Pullout tests are conducted to measure the bond performance of PVA fiber from cement mortar. Test results showed the incorporation of metakaoline and silica fume can effectively enhance the PVA fiber-cement mortar interfacial properties. Bond strength and interface toughness increased with metakaoline and silica fume content up to 10 % in cement mortar and decreased when the metakaoline and silica fume content reached 15 %. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

Effect of Polyvinyl Alcohol Fiber Volume Fraction on Pullout Behavior of Structural Synthetic Fiber in Hybrid Fiber Reinforced Cement Composites (하이브리드 섬유 보강 시멘트 복합 재료에서 구조용 합성 섬유의 인발 거동에 미치는 폴리비닐 알코올 섬유 혼입률의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.461-469
    • /
    • 2011
  • In this study, the effect of polyvinyl alcohol (PVA) fiber volume fraction on the pullout behavior of structural synthetic fiber in hybrid structural synthetic fiber and PVA fiber cement composites are presented. Pullout behavior of the hybrid fiber cement composites and structural synthetic fiber were determined by dog-bone bond tests. Test results found that the addition of PVA fiber can effectively enhance the structural synthetic fiber cement based composites pullout behavior, especially in fiber interface toughness. Pullout test results of the structural synthetic fiber showed the interface toughness between structural synthetic fiber and PVA fiber reinforced cement composites increases with the volume fraction of PVA fiber. The microstructural observation confirms the incorporation of PVA fiber can effectively enhance the interface toughness mechanism of structural synthetic fiber and PVA fiber reinforced cement composites.