• Title/Summary/Keyword: pullout behaviour

Search Result 17, Processing Time 0.027 seconds

Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.301-313
    • /
    • 2017
  • This paper presents the fibre-matrix interfacial properties of hooked end steel fibres embedded in ultra-high performance mortars with various water/binder (W/B) ratios. The principle objective was to improve bond behaviour in terms of bond strength by reducing the (W/B) ratio to a minimum. Results show that a decrease in W/B ratio has a significant effect on the bond-slip behaviour of both types of 3D fibres, especially when the W/B ratio was reduced from 0.25 to 0.15. Furthermore, the optimization in maximizing pullout load and total pullout work is found to be more prominent for the 3D fibres with a larger diameter than for fibres with a smaller diameter. On the contrary, increasing the embedded length of the 3D fibres did not result in an improvement on the maximum pullout load, but increase in the total pullout work.

An analytical analysis of the pullout behaviour of reinforcements of MSE structures

  • Ren, Feifan;Wang, Guan;Ye, Bin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.233-240
    • /
    • 2018
  • Pullout tests are usually employed to determine the ultimate bearing capacity of reinforced soil, and the load-displacement curve can be obtained easily. This paper presents an analytical solution for predicting the full-range mechanical behavior of a buried planar reinforcement subjected to pullout based on a bi-linear bond-slip model. The full-range behavior consists of three consecutive stages: elastic stage, elastic-plastic stage and debonding stage. For each stage, closed-form solutions for the load-displacement relationship, the interfacial slip distribution, the interfacial shear stress distribution and the axial stress distribution along the planar reinforcement were derived. The ultimate load and the effective bond length were also obtained. Then the analytical model was calibrated and validated against three pullout experimental tests. The predicted load-displacement curves as well as the internal displacement distribution are in closed agreement with test results. Moreover, a parametric study on the effect of anchorage length, reinforcement axial stiffness, interfacial shear stiffness and interfacial shear strength is also presented, providing insights into the pullout behaviour of planar reinforcements of MSE structures.

A Study on the Pullout Behavior of Shear Connectors which Fix the Additional Wall to the PHC-W Piles in the PHC-W Type Permanent Building Retaining Wall (PHC-W 흙막이를 활용한 건축영구벽체에서 PHC-W말뚝과 증설벽체를 합벽시키는 전단연결재의 인발거동에 관한 연구)

  • Jin, Hong-min;Kim, Sung-su;Choi, jeong-pyo;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.107-113
    • /
    • 2017
  • Shear Connector should be used to fix the PHC pile with extension wall in order to utilize PHC-W retaining wall as permanent wall. The pullout behaviours on shear connectors anchored into PHC-W pile were observed as two modes. The first type behaviour showed that after reaching the maximum pullout resistance, the anchorage was broken and shear connector was pulled out abruptly. The second type behaviour showed that even after arriving the maximum pullout resistance, the anchorage was not destroyed and there was a progressive increase in pullout displacement. The maximum pullout resistance of the steel anchor shear connector is larger than that of deformed bar shear connector. The larger the diameter and the longer the embedment length of shear connector, the higher the maximum pullout resistance would be. The pullout displacements corresponding to the maximum pullout resistance of the shear connector showed various ranges regardless of the materials, the diameters and the anchoring lengths. A-D20 shear connectors showed a pull-out displacement of about 8~10 mm. A-D16, D-D19 and D-D16 shear connectors exhibited a pulling displacement of about 14~20 mm, but a pulling displacement of about 6~10 mm when the anchoring lengths were 50 and 80 mm.

A numerical study on pull-out behaviour of cavern-type rock anchorages (수치해석에 의한 암반상의 지중정착식 앵커리지 인발 거동 연구)

  • Hong, Eun-Soo;Cho, Gye-Chun;Baak, Seng Hyoung;Park, Jae-Hyun;Chung, Moonkyung;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.521-531
    • /
    • 2014
  • This paper is a study for behaviour of cavern type anchorage tunnels for suspension bridges with cable tension. Anchorage behaviour, design method for anchorage, and failure surface angle, ${\delta}$ are analyzed by comparing numerical analysis results and ultimate pullout capacities($P_u$) using bilinear corelation equation. Results show that design depths for cavern type anchorage tunnels are easily checked with linear relationships for $P/{\gamma}/H$ vs. displacement and $P_u/{\gamma}/H$ vs. H/b. The analysis results of maximum shear strain distribution and plastic status show that failure shapes are closer to circular arc model than soil cone model which frequently used. To an easy calculation of the ultimate pullout capacity, we propose a simple bilinear failure model in this study. The calculated ultimate pullout capacities from the proposed bilinear corelation equation using two failure angles results are similar to the ultimate pullout capacities from numerical analysis.

A Study on the Behaviour Mechanism of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1240-1249
    • /
    • 2008
  • Jacket anchor was developed to increase the pullout resistance of general ground anchor in soft ground, and the mechanism of pullout resistance of jacket anchor was analyzed. Also, the ultimate bond stress of jacket anchor was estimated by ultimate resistance which is determined by field tests. Grout milk was injected into the jacket to make grout bulb of jacket anchor. The formation of grout bulb of jacket anchor increases the diameter of grout bulb, ground strength and confining pressure between anchor grout and soil. From the twelve field test results, it was observed that the pullout resistance of jacket anchor is 15.38~295.02%(average 83.53%) greater than that of general ground anchor, and plastic deformation of jacket anchor is 20.78~1,496.45%(average 288.78%) smaller than that of general ground anchor at the same load cycle. Especially, it was investigated that the increase of ultimate resistance over 200% and the reduction of plastic deformation over 600% was obtained in gravel layer. It means that the jacket anchor is superior to the general ground anchor in gravel layer. Finally, the ultimate bond stress was proposed to design jacket anchor.

  • PDF

Numerical Study on the Effect of Steel Pipe Specification on Pile Behaviour (강관말뚝의 제원이 말뚝거동에 미치는 영향에 관한 수치해석 연구)

  • Park, Jeong-Jun;Lee, Kwang-Wu;You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.5
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, three dimensional numerical analyses were carried out to predict axial (pullout and compressive) and lateral behavior of rock-socketed steel pipe pile varying diameter, wall thickness, and length. As a result of the pile pullout analyses, it was confirmed that the pullout displacement was inversely proportional to the pile diameter for given pile length, thickness, pullout load. Load-settlement relationship of the compressive pile analyses revealed that the effect of pile thickness on pile resistance was more significant than that of pile diameter. In addition, laterally loaded pile analyses showed that pile lateral resistance is influenced above all else by pile diameter. This study showed that it is necessary to conduct numerical analyses to identify the effects of pile diameter, wall thickness, and pile length on the steel pipe pile behavior as a preliminary pile design under specified loading conditions.

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.

Realistic Prediction of Post-Cracking Behaviour in Synthetic Fiber Reinforced Concrete Beams (합성섬유보강 콘크리트 보의 균열 후 거동 예측)

  • 오병환;김지철;박대균;원종필
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.900-909
    • /
    • 2002
  • Fibers play a role to increase the tensile strength and cracking resistance of concrete structures. The post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of this study is to develop a realistic analysis method for the post cracking behavior of synthetic fiber reinforced concrete members. For this purpose, the cracked section is assumed to behave as a rigid body and the pullout behavior of single fiber is employed. A probabilistic approach is used to calculate effective number of fibers across crack faces. The existing theory is compared with test data and shows good agreement. The proposed theory can be efficiently used to describe the load-deflection behavior, moment-curvature relation, load-crack width relation of synthetic fiber reinforced concrete beams.

An Experimental Study on Pullout Behavior of Shallow Bearing Plate Anchor (얕은 지압형 앵커의 인발거동특성에 관한 실험적 연구)

  • Hong, Seok-Woo;Kim, Hyung-Kong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.5-18
    • /
    • 2014
  • Depending on the underground load support mechanism, anchors are classified as friction anchors, bearing plate anchors and the recently developed combined friction-bearing plate anchors which combine the characteristics of both the friction and bearing plate type anchors. Even though numerous studies have been performed on bearing plate anchors, there were only few studies performed to observe the failure surface of bearing plate anchors. Furthermore most of the soil materials used on these tests were not real sand but carbon rods. In this study, sand was placed in the soil tank and laboratory tests were performed with bearing plate anchors installed with an embedment depth (H/h) ranging from 1~6. The variation in the pullout capacity and the behaviour of soil with the embedment depth (H/h) were observed. Ground deformation analysis program was also used to analyze soil displacement, zero extension direction, maximum shear strain contours. It was determined from the analysis of the results that at ultimate pullout resistance the deformation was 5 mm and the failure surface occurred in a narrower area when compared with results of the previous researches. It was also observed that the width of the fracture surface gradually becomes wider and expands up to the surface as the deformation increases from 10 mm to 15 mm.