• Title/Summary/Keyword: puffing temperature

Search Result 29, Processing Time 0.027 seconds

Physicochemical Properties of Puffed Snack Using Pellet Added with Ginseng Powder (인삼분말을 첨가한 Pellet과 이를 이용하여 제조한 팽화과자의 특성)

  • Park, Dong Hyeon;Jeong, Hayeong;Choi, Mi-Jung;Cho, Youngjae
    • Food Engineering Progress
    • /
    • v.23 no.3
    • /
    • pp.186-192
    • /
    • 2019
  • This study was conducted to improve functionality and nutrition for the utilization of ginseng. Ginseng powder pellets containing various moisture contents (1%, 4%, 7% or 10%) were prepared and mixed with rice as 1:1 (w/w). Then, samples were puffed at 180, 190, 200, 210 or 220℃. The puffed ginseng snacks were analyzed for appearance, color, hardness, specific volume and principal component analysis. For appearance analysis, when snack samples containing ginseng pellets with moisture content of 7% or higher were puffed at 200℃, they showed unbroken round shape. For color analysis, the values of L* and a* tended to increase as the moisture content of pellet and puffing temperature increased. As the water content of pellet and the pumping temperature increased, the specific volume of the puffed ginseng snack increased, while the hardness of the sample decreased. In conclusion, all results supposed that the processing conditions including moisture of pellet and puffing temperature had influenced on the physicochemical properties of puffed ginseng snack.

Extrusion Puffing of Pork Meat-Defatted Soy Flour-Corn Starch Blends to Produce Snack-like Products

  • Jennifer J. Jamora;Rhee, Ki-Soon;Rhee, Khee-Choon
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.3
    • /
    • pp.163-169
    • /
    • 2001
  • To produce expanded, minimally hard extrudates from blends of raw pork meat (20%), defatted soy flour (25%), and corn starch using a single-screw extruder, various combinations of feed moisture, process temperature, and screw speed were evaluated. First series of extrusion runs were conducted according to a central composite rotatable design/response surface methodology (RSM). Upon assessing the full model for each response, insignificant terms were eliminated to determine final response surface models. Screw speed within the range evaluated was found to have no significant effect on expansion ratio (ER) or shear force (SF) of extrudates. Since examinations of the response surfaces and their generated grids of predicted values indicated that maximum ER and minimum SF were likely to be attained with a moisture-temperature combination outside the RSM experimental range, the second series of extrusion runs were conducted with several selected combinations of moisture and temperature to determine a practical optimum extrusion condition. The combination of 22.78% feed moisture, 16$0^{\circ}C$ process temperature, and 170 rpm screw speed was chosen as such a condition, and used in the final extrusion. The final product required less force to break than did commercial pretzel sticks.

  • PDF

Shelf-life Study of Yukwa(Korean Traditional Puffed Rice Snack) and Substitution of Puffing Medium to Air (유과의 저장성과 팽화방법 개선시험)

  • Shin, Dong-Hwa;Kim, Myung-Kon;Chung, Tae-Kyu;Lee, Hyun-Yu
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.266-271
    • /
    • 1990
  • Yukwa(Korean traditional puffed rice snack) puffed by vegetable oil was evaluated its shelf-life and monitored its physicochemical changes during long term storage. And air puffing instead of oil was tested for substitution of puffing medium. The shelf-life of oil puffed Yukwa was less than 4 weeks at $30^{\circ}C$ by peroxide value and negligible changes in physical texture was detected after 9 weeks storge. There was a possibility to apply air puffing method for Yukwa making and its optimum temperature was around $250^{\circ}C$. Air puffed Yukwa was a little less expansion rate, same level of hardness and high brittleness compared with oil puffed . Sensory evaluation of air puffed Yukwa was as same as air puffed in odour, firmness and texture but overall taste was less score probably causing by oil used which need a impovement for air puffed Yukwa. No differences in structure of both Yukwa observed by SEM was showed.

  • PDF

Effects of Extrusion Process Parameters on Puffing of Extruded Pellets (압출성형 공정변수가 압출성형 펠릿의 팽화에 미치는 영향)

  • Kim, Jae-Hyun;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.55-59
    • /
    • 2001
  • Pressure-puffing system or extruder has been used to puff rice kernel or rice flour. Most of the study on rice puffing were the effect of process conditions such as moisture content and heating temperature on physical and chemical characteristics of popped rice. The study on mechanism and development of instant puffed rice like popcorn has been limited. Extruded waxy rice pellets were puffed in a microwave oven after drying and conditioning. Extruded pellets were formed with extrusion conditions of $20{\sim}27%$ moisture content, 2.76 MPa $CO_2$ gas injection pressure and 200 rpm screw speed. Under these conditions, puffed waxy rice pellets in microwave oven had low density and soft texture. Density and texture of puffed waxy rice pellet could be optimized by control of moisture content, $CO_2$ gas injection pressure and screw speed that affect significantly when puffing extruded waxy rice pellet.

  • PDF

Effect of Extrusion Temperature on Puffing of White and Red Ginseng (압출성형 온도가 백삼과 홍삼의 팽화에 미치는 영향)

  • Kim, Bong-Su;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.1109-1113
    • /
    • 2005
  • The objective of this study was to determine the effect of extrusion temperature on puffing of white and red ginseng powder. The extrusion variables were feed material (red and white ginseng powder) and die temperature $(100\;and\;115^{\circ}C)$. The analyzed characteristics of ginseng extrudates were sectional expansion index, microstructure and rheological properties. Most of biopolymer was highly puffed at higher extrusion temperature, but the cross-sectional expansion of white and red ginseng powder was higher at 1000e and longitudinal expansion seems to higher at $115^{\circ}C$. White and red ginseng powder were puffed inconsistently and discontinuously at $115^{\circ}C$. The scanning electron microphotograph of extruded white ginseng was uniform air cell distribution at 100oe, but pore size increased at $115^{\circ}C$ and had fine uniformity due to pore explosion. White ginseng and its extrudate were pseudoplastic. Intrinsic viscosity was lower as a result of increased die temperature. The cross-sectional expansion seems to be inconsistent and decreased due to decrease in melt viscosity at $115^{\circ}C$.

Optimization of Processing Conditions for the Production of Puffed Rice (팽화미 제조 공정조건의 최적화)

  • Cheon, Hee Soon;Cho, Won Il;Jhin, Changho;Back, Kyeong Hwan;Ryu, Kyung Heon;Lim, Su Youn;Chung, Myong Soo;Choi, Jun Bong;Lim, Taehwan;Hwang, Keum Taek
    • Culinary science and hospitality research
    • /
    • v.21 no.1
    • /
    • pp.77-89
    • /
    • 2015
  • The objective of this study was to optimize processing conditions for the production of an instant puffed rice product using response surface methodology (RSM) and contour analysis. Sensory and texture qualities, and physical properties of the puffed rice were analyzed with various processing conditions related to drying and puffing temperature, and moisture content. Preference, color intensity, cohesiveness, rehydration ratio, density and lightness of the puffed rice product significantly varied depending on the processing conditions. The responses showed high $R^2$ values (0.623, 0.852, 0.735, 0.688, and 0.790) and lack-of-fit. Rehydration ratio was found to have a negative correlation with density in the condition of drying and puffing temperature. Lightness and preference scores of the puffed rice increased as the moisture content increased. According to RSM, the preference scores were very highly related to the moisture content, and the optimum processing conditions of the puffed rice product were at $40^{\circ}C$ of drying temperature, with 11.0% of moisture content, and at $232.7^{\circ}C$ of puffing temperature.

Quality Characteristics of Puffed Snacks (ppeongtuigi) with Purple Sweet Potato Flours Using Different Puffing Conditions (자색 고구마 분말을 첨가한 팽화과자(뻥튀기)의 팽화 조건에 따른 품질 특성)

  • Cheon, Seon-Hwa;Hwang, Su-Jung;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • The effect of puffing conditions on the physical properties and sensory evaluations of a puffed snack (ppeongtuigi) made of purple sweet potato flour was investigated. The snacks consisted of coated artificial rice with purple sweet potato flour with water, tempered to 7%, 9% and 11% moisture. The coated material was puffed at 236, 241, or $246^{\circ}C$ for 4, 5, or 6 s. The $L^*$ value decreased as the heating time increased. The $a^*$ and $b^*$ values, specific volume, and hardness increased with increasing heating temperature and heating time. Puffed snacks produced under conditions of higher moisture (7%), higher heating temperature ($246^{\circ}C$), or longer heating time (5 s) showed high scores for appearance, color, taste, and overall acceptability in sensory evaluations.

Effect of Ambient Temperature and Droplet Size of a Single Emulsion Droplet on Auto-ignition and Micro-explosion (단일 유화액적에서의 분위기 온도와 액적크기에 따른 자발화와 미소폭발의 영향)

  • Jeong, In-Cheol;Lee, Kyung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • The characteristics of auto-ignition and combustion process of a single droplet of emulsified fuel suspended in a high-temperature air chamber have been investigated experimentally with various droplet sizes, surrounding temperatures, and water contents. The used fuels was n-Decane and it was emulsified with varied water contents whose maximum is 30%. The high-speed camera has been adopted to measure the ignition delay and flame life time. It was also applied to observe micro-explosion behaviors. The increase of droplet size and chamber temperature cause the decrease of the ignition delay time and flame life-time. As the water contents increases, the ignition delay time increases and the micro-explosion behaviors are strengthened. The starting timings of micro-explosion and fuel puffing are compared for different droplet sizes and the amount of water contents.

Properties of Puffed Mulberry-Rice Snack, Ppeongtuigi by Pellet with Mulberry Leaf and Brown Rice Flour (뽕잎 분말과 현미가루가 첨가된 pellet을 이용하여 제조한 뽕잎 팽화과자(뻥튀기)의 특성)

  • Jang, Eun-Young;Jin, Tie-Yan;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.756-761
    • /
    • 2006
  • The physical and sensory properties of puffed mulberry-rice snack (PMRS) by pellet with mulberry leaf and brown rice flour were evaluated at different temper moisture contents and at varying puffing temperatures. The mulberry pellets were prepared using a food extruder to extrude the dough made from mulberry leaf powder and brown rice flour. The mulberry pellets were tempered to 14, 16, and 18% moisture content and were puffed at 220, 230, and 240$^{\circ}C$ for 4, 5, and 6 sec. The specific volume and breaking strength of PMRS increased with heating temperature and time; however, the breaking strength decreased as the moisture content increased. The Hunter L value decreased as the heating temperature and time increased, showing an especially large decrease with increased heating time. The a and b values increased with increasing heating temperature and time. These results indicated that PMRS, which has a distinctive flavor and color, could be effectively used as a functional food with the use of a puffing machine and that PMRS shows potential for use as new snack product.

Preparation of needle coke from petroleum by-products

  • Halim, Humala Paulus;Im, Ji Sun;Lee, Chul Wee
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.152-161
    • /
    • 2013
  • Needle coke is an important material for graphite electrodes. Delayed coking is used to produce needle coke. Producing good quality needle coke is not simple because it is a multi-parameter controlled process. Apart from that, it is important to understand the mechanism responsible for the delayed coking process, which involves mesophase formation and uniaxial rearrangement. Temperature and pressure need to be optimized for the different substances in every feedstock. Saturate hydrocarbon, aromatic, resin and asphaltene compounds are the main components in the delayed coking process for a low Coefficient Thermal Expansion value. In addition, heteroatoms, such as sulphur, oxygen, nitrogen and metal impurities, must be considered for a better graphitization process that prevents the puffing effect and produces better mesophase formation.