• Title/Summary/Keyword: public key-based authentication

Search Result 244, Processing Time 0.057 seconds

A Study on Mobile IPv4 Authentication Mechanisms

  • Lim, Jung-Muk;Lim, Hyung-Jin;Chung, Tai-Myoung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.277-280
    • /
    • 2005
  • With the proliferation of mobile terminals, use of the Internet in mobile environments is becoming more common. To support mobility in these terminals, Mobile IPv4 is proposed and represents the standard in IPv4 environments. Authentication should be mandatory, because mobile terminals can utilize Internet services in any foreign domain. Mobile IPv4 provides symmetric key based authentication using the default HMAC-MD5. However, symmetric key based authentication creates a key distribution problem. To solve this problem, public key based authentication mechanisms have been proposed. In this paper, the performance of each of these mechanisms is evaluated. The results present that, among these mechanisms, partial certificate based authentication has superior performance, and certificate based authentication has the worst performance. Although current public key based authentication mechanisms have lower performance than symmetric key based authentication, this paper presents the possibility that public key based authentication mechanisms may be used for future mobile terminal authentication.

  • PDF

Public Key Authentication using(t, n) Threshold Scheme for WSN ((t, n) 임계치 기법을 이용한 센서네트워크에서의 공개키 인증)

  • Kim, Jun-Yop;Kim, Wan-Ju;Lee, Soo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.58-70
    • /
    • 2008
  • Earlier researches on Sensor Networks preferred symmetric key-based authentication schemes in consideration of limitations in network resources. However, recent advancements in cryptographic algorithms and sensor-node manufacturing techniques have opened suggestion to public key-based solutions such as Merkle tree-based schemes. These previous schemes, however, must perform the authentication process one-by-one in hierarchical manner and thus are not fit to be used as primary authentication methods in sensor networks which require mass of multiple authentications at any given time. This paper proposes a new concept of public key-based authentication that can be effectively applied to sensor networks. This scheme is based on exponential distributed data concept, a derivative from Shamir's (t, n) threshold scheme, in which the authentication of neighbouring nodes are done simultaneously while minimising resources of sensor nodes and providing network scalability. The performance advantages of this scheme on memory usage, communication overload and scalability compared to Merkle tree-based authentication are clearly demonstrated using performance analysis.

A Study on Public Key Cryptographic Authentication System Providing Key Distribution and Recovery in the Initial Authentication (초기인증에서 키 분배 및 복구를 지원하는 공개키 암호 인증시스템에 관한 연구)

  • Shin Kwang-Cheul;Cho Sung-Je
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.83-91
    • /
    • 2006
  • In this paper, we improved a cryptography system model based on the secure initial authentication public key with PKINIT of authentication and key recovery protocol. It is applied to all fields of cryptography system using certificate. This study presents two mechanisms to authenticate between member users. The first mechanism is initial authentication and distribution of session key by public key cryptography based on certificate between entity and server, and the second mechanism is a key recovery support protocol considering loss of session key in the secure communication between application servers.

  • PDF

Design of a Strong Authentication Mechanism using Public-Key based on Kerberos (공개키를 이용한 커버로스 기반의 강력한 인증 메커니즘 설계)

  • 김은환;전문석
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.4
    • /
    • pp.67-76
    • /
    • 2002
  • Kerberos is designed to provide strong authentication between client and application servers which are working in distributed network environment by using symmetric-key cryptography, and supposed to trust other systems of the realm. In this paper, we design an efficient and strong authentication mechanism by introducing the public/private-key to Kerberos. In the mechanism to make a system more secure, the value of the session key is changed everytime using MAC(message authentication code) algorithm with the long-term key for user-authentication and a random number exchanged through the public key. Also, we employ a mutual authentication method, which is used on challenge-response mechanism based on digital signatures, to improve trust between realms, and present a way of reducing the number of keys by simplifying authentication steps.

Password-Based Key Exchange Protocols for Cross-Realm (Cross-Realm 환경에서 패스워드기반 키교환 프로토콜)

  • Lee, Young Sook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.139-150
    • /
    • 2009
  • Authentication and key exchange are fundamental for establishing secure communication channels over public insecure networks. Password-based protocols for authenticated key exchange are designed to work even when user authentication is done via the use of passwords drawn from a small known set of values. There have been many protocols proposed over the years for password authenticated key exchange in the three-party scenario, in which two clients attempt to establish a secret key interacting with one same authentication server. However, little has been done for password authenticated key exchange in the more general and realistic four-party setting, where two clients trying to establish a secret key are registered with different authentication servers. In fact, the recent protocol by Yeh and Sun seems to be the only password authenticated key exchange protocol in the four-party setting. But, the Yeh-Sun protocol adopts the so called "hybrid model", in which each client needs not only to remember a password shared with the server but also to store and manage the server's public key. In some sense, this hybrid approach obviates the reason for considering password authenticated protocols in the first place; it is difficult for humans to securely manage long cryptographic keys. In this work, we introduce a key agreement protocol and a key distribution protocol, respectively, that requires each client only to remember a password shared with its authentication server.

A study on Public Key Authentication using Polynomial Secret Sharing in WSN (무선센서네트워크에서 다항식 비밀분산을 이용한 공개키 인증방식에 관한 연구)

  • Kim, Il-Do;Kim, Dong-Cheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2479-2487
    • /
    • 2009
  • Earlier researches on Sensor Networks preferred symmetric key-based authentication schemes in consideration of limitations in network resources. However, recent advancements in cryptographic algorithms and sensor-node manufacturing techniques have opened suggestion to public key-based solutions such as Merkle tree-based schemes. This paper proposes a new concept of public key-based authentication using Polynomial Secret Sharing that can be effectively applied to sensor networks and a detection of malicious node using the hash function. This scheme is based on exponential distributed data concept, a derivative from Shamir's (t,n) threshold scheme, in which the authentication of neighbouring nodes are done simultaneously while minimising resources of sensor nodes and providing network scalability.

A Study on the Certification System in Electromic Commerce (전자상거래(電子商去來)의 인증체계(認證體系)에 관한 고찰(考察))

  • Ha, Kang Hun
    • Journal of Arbitration Studies
    • /
    • v.9 no.1
    • /
    • pp.367-390
    • /
    • 1999
  • The basic requirements for conducting electronic commerce include confidentiality, integrity, authentication and authorization. Cryptographic algorithms, make possible use of powerful authentication and encryption methods. Cryptographic techniques offer essential types of services for electronic commerce : authentication, non-repudiation. The oldest form of key-based cryptography is called secret-key or symmetric encryption. Public-key systems offer some advantages. The public key pair can be rapidly distributed. We don't have to send a copy of your public key to all the respondents. Fast cryptographic algorithms for generating message digests are known as one-way hash function. In order to use public-key cryptography, we need to generate a public key and a private key. We could use e-mail to send public key to all the correspondents. A better, trusted way of distributing public keys is to use a certification authority. A certification authority will accept our public key, along with some proof of identity, and serve as a repository of digital certificates. The digital certificate acts like an electronic driver's license. The Korea government is trying to set up the Public Key Infrastructure for certificate authorities. Both governments and the international business community must involve archiving keys with trusted third parties within a key management infrastructure. The archived keys would be managed, secured by governments under due process of law and strict accountability. It is important that all the nations continue efforts to develop an escrowed key in frastructure based on voluntary use and international standards and agreements.

  • PDF

Design and Implementation of Public key-based Video Conference System for Authentication and Encryption (공개키기반 사용자인증과 암호화를 적용한 영상회의 시스템 설계 및 구현)

  • Jung Yong-Deug;Lee Sang-Hun;Jin Moon-Seog
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.971-980
    • /
    • 2004
  • This paper describes the design and implementation of the video conferencing system using public key infrastructure which is used for user authentication and encryption. Public key infrastructure reinforces the authentication process for conference participant, and the symmetric key system blocks malicious access to information and protect conference control information. This paper shows the implementation of the trans portation layer secure protocol in conformity with Korea public key authentication algorithm standard and symmetric encryption algorithm (DES, 3DES and AES) for media stream encryption. In this paper, we deal with two ways of protecting information : transportation layer secure protocol secures user authentication process and the conference control information; while public key-based authentication system protects personal information of users when they connect to the network. When distributing the session keys for encryption, Internet Key Exchange is used for P2P communication, and secure protocol is employed for 1 : N multi-user communication in the way of distributing the public key-based en-cryption key.

An Authentication Mechanism Based on Clustering Architecture in Mobile Ad Hoc Networks (이동 Ad Hoc 네트워크 환경에서 클러스터링 구조에 기반한 인증 메커니즘)

  • Lee, Tao;Shin, Young-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1461-1464
    • /
    • 2005
  • In contrast with conventional networks, mobile ad hoc networks usually do not provide online access to trusted authorities or to centralized servers, and they exhibit frequent partitioning due to link and node failures and node mobility. For these reasons, traditional security solutions that require online trusted authorities or certificate repositories, but those are not well-suited for securing ad hoc networks. Moreover, a fundamental issue of securing mobile ad hoc networks is to ensure mobile nodes can authenticate each other. Because of its strength and efficiency, public key and digital signature is an ideal mechanism to construct the authentication service. Although this is already mature in the internet application, providing public key based authentication is still very challenging in mobile ad hoc networks. In this paper I propose a secure public key authentication service based on clustering model and trust model to protect nodes from getting false public keys of the others efficiently when there are malicious nodes in the network.

  • PDF

A Comparative Analysis of PKI Authentication and FIDO Authentication (PKI 인증과 FIDO 인증에 대한 비교 분석)

  • Park, Seungchul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1411-1419
    • /
    • 2017
  • The two factor authentication capability, private key possession and key protection password knowledge, and the strong public key cryptography protocol of PKI authentication have largely contributed to the rapid construction of Internet transaction trusted infrastructure. The reusability of a certificate-based identity for every PKI site was another contribution factor of the spread of PKI authentication. Nevertheless, the PKI authentication has been criticised mainly for the cost of PKI construction, inconvenience of individual certificate management, and difficulties of password management. Recently FIDO authentication has received high attention as an alternative of the PKI authentication. The FIDO authentication is also based on the public key cryptography which provides strong authentication services, but it does not require individual certificate issuance and provides user-friendly and secure authentication services by integrating biometric technologies. The purpose of this paper is to concretely compare the PKI-authentication and FIDO-authentication and, based on the analysis result, to propose their corresponding applications.