• Title/Summary/Keyword: pseudorange error

Search Result 51, Processing Time 0.021 seconds

Times Series Analysis of GPS Receiver Clock Errors to Improve the Absolute Positioning Accuracy

  • Bae, Tae-Suk;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.537-543
    • /
    • 2007
  • Since the GPS absolute positioning with pseudorange measurements can significantly be affected by the observation error, the time series analysis of the GPS receiver clock errors was performed in this study. From the estimated receiver clock errors, the time series model is generated, and constrained back in the absolute positioning process. One of the CORS (Continuously Operating Reference Stations) network is used to analyze the behavior of the receiver clock. The dominant part of the model is the linear trend during 24 hours, and the seasonal component is also estimated. After constraining the modeled receiver clock errors, the estimated position error compared to the published coordinates is improved from ${\pm}11.4\;m\;to\;{\pm}9.5\;m$ in 3D RMS.

Development of the KASS Multipath Assessment Tool

  • Cho, SungLyong;Lee, ByungSeok;Choi, JongYeoun;Nam, GiWook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The reference stations in a satellite-based augmentation system (SBAS) collect raw data from global navigation satellite system (GNSS) to generate correction and integrity information. The multipath signals degrade GNSS raw data quality and have adverse effects on the SBAS performance. The currently operating SBASs (WAAS and EGNOS, etc.) survey existing commercial equipment to perform multipath assessment around the antennas. For the multi-path assessment, signal power of GNSS and multipath at the MEDLL receiver of NovAtel were estimated and the results were replicated by a ratio of signal power estimated at NovAtel Multipath Assessment Tool (MAT). However, the same experiment environment used in existing systems cannot be configured in reference stations in Korean augmentation satellite system (KASS) due to the discontinued model of MAT and MEDLL receivers used in the existing systems. This paper proposes a test environment for multipath assessment around the antennas in KASS Multipath Assessment Tool (K-MAT) for multipath assessment. K-MAT estimates a multipath error contained in the code pseudorange using linear combination between the measurements and replicates the results through polar plot and histogram for multipath assessment using the estimated values.

A Modified Klobuchar Model Reflecting Characteristics of Ionospheric Delay Error in the Korea Region

  • Dana Park;Young Jae Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2023
  • When calculating the user's position using satellite signals, the signals originating from the satellite pass through the ionosphere and troposphere to the user. In particular, the ionosphere delay error that occurs when passing through the ionosphere delays when the signal is transmitted, generating a pseudorange error and position error at a large rate. Therefore, to improve position accuracy, it is essential to correct the ionosphere layer error. In a receiver capable of receiving dual frequency, the ionosphere error can be eliminated through a double difference, but in a single frequency receiver, an ionosphere correction model transmitted from a Global Navigation Satellite System (GNSS) satellite is used. The popularly used Klobuchar model is designed to improve performance globally. As such, it does not perform perfectly in the Korea region. In this paper, the characteristics of the delay in the ionosphere in the Korean region are identified through an analysis of 10 years of data, and an improved ionosphere correction model for the Korean region is presented using the widely employed Klobuchar model. Through the proposed model, vertical position error can be improved by up to 40% relative to the original Klobuchar model in the Korea region.

A Model to Evaluate Jammer Influences on Ranging Measurements

  • Yoo, Won Jae;Kim, Heyone;Hwang, Dong-Hwan;So, Hyoungmin;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.41-47
    • /
    • 2019
  • Recently, number of intentional jamming has increased significantly. If GNSS jammers are activated, user receivers can be largely influenced due to the vulnerable characteristic of the GNSS (Global Navigation Satellite System) signal. When the reception power of the jamming signal and that of the navigation signal are similar, the C/A (Coarse Acquisition) chip delay error can occur in the delay locked loop. To evaluate the jamming effect, a new measurement model is formulated based on previous research works. The new model explains how the jamming to signal ratio affects the ranging measurement accuracy and other parameters. To evaluate the validity of the newly formulated model, the experiment results of the previous research works under actual jamming environment are utilized. By evaluating the consistency of the carrier-to-noise ratio (C/N0) and the position error with the actual jamming environment, the validity of the newly formulated model is verified.

Station Based Detection Algorithm using an Adaptive Fading Kalman Filter for Ramp Type GNSS Spoofing (적응 페이딩 칼만 필터를 이용한 기준국 기반의 램프 형태 GNSS 기만신호 검출 알고리즘)

  • Kim, Sun Young;Kang, Chang Ho;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.283-289
    • /
    • 2015
  • In this paper, a GNSS interference detection algorithm based on an adaptive fading Kalman filter is proposed to detect a spoofing signal which is one of the threatening GNSS intentional interferences. To detect and mitigate the spoofing signal, the fading factor of the filter is used as a detection parameter. For simulation, the effect of the spoofing signal is modeled by the ramp type bias error of the pseudorange to emulate a smart spoofer and the change of the fading factor value according to ramp type bias error is quantitatively analyzed. In addition, the detection threshold is established to detect the spoofing signal by analyzing the change of the error covariance and the effect of spoofing is mitigated by controlling the Kalman gain of the filter. To verify the performance analysis of the proposed algorithm, various simulations are implemented. Through the results of simulations, we confirmed that the proposed algorithm works well.

Robustness Examination of Tracking Performance in the Presence of Ionospheric Scintillation Using Software GPS/SBAS Receiver

  • Kondo, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.235-240
    • /
    • 2006
  • Ionospheric scintillation induces a rapid change in the amplitude and phase of radio wave signals. This is due to irregularities of electron density in the F-region of the ionosphere. It reduces the accuracy of both pseudorange and carrier phase measurements in GPS/satellite based Augmentation system (SBAS) receivers, and can cause loss of lock on the satellite signal. Scintillation is not as strong at mid-latitude regions such that positioning is not affected as much. Severe effects of scintillation occur mainly in a band approximately 20 degrees on either side of the magnetic equator and sometimes in the polar and auroral regions. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. This paper focuses on estimation of the effects of ionospheric scintillation on GPS and SBAS signals using a software receiver. Software receivers have the advantage of flexibility over conventional receivers in examining performance. PC based receivers are especially effective in studying errors such as multipath and ionospheric scintillation. This is because it is possible to analyze IF signal data stored in host PC by the various processing algorithms. A L1 C/A software GPS receiver was developed consisting of a RF front-end module and a signal processing program on the PC. The RF front-end module consists of a down converter and a general purpose device for acquiring data. The signal processing program written in MATLAB implements signal acquisition, tracking, and pseudorange measurements. The receiver achieves standalone positioning with accuracy between 5 and 10 meters in 2drms. Typical phase locked loop (PLL) designs of GPS/SBAS receivers enable them to handle moderate amounts of scintillation. So the effects of ionospheric scintillation was estimated on the performance of GPS L1 C/A and SBAS receivers in terms of degradation of PLL accuracy considering the effect of various noise sources such as thermal noise jitter, ionospheric phase jitter and dynamic stress error.

  • PDF

Development of B-Value Based GBAS Ground Facility Error Standard Deviation Model and Verification (B-Value를 이용한 GBAS 지상국 오차 표준편차 모델 개발 및 성능 평가)

  • Jun, Hyang-Sig;Ahn, Jong-Sun;Lee, Young-Jae;Choi, Young-Kiu;Sung, Sang-Kyung;Yeom, Chan-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1232-1237
    • /
    • 2009
  • The ICAO and FAA are developing and verifying of GBAS for civil aircraft landing and take-off. The guarantee of aircraft integrity issue is the important part of GBAS. To guarantee integrity, the GBAS ground facility broadcasts various informations to aircraft. The informations are related to the estimated accuracy of each pseudorange correction and the estimated error terms, for example B-value and standard deviation of the ground facility error. These parameters are used to calculate position error (estimated value of the user). If estimated position errors don't satisfy requirements, aircraft use alternate navigation means. In this paper, GBAS reference stations's real data, which operated by KARI (Korea Aerospace Research Institute) in Jeju international airport, are used to development of new ground facility error standard deviation model. We verify improvement of GBAS availability, with respected to vertical protection level, using B-value based a new ground facility error standard deviation model and a sigma inflation factor.

Performance Analysis of Pseudorange Error in STAP Beamforming Algorithm for Array Antenna

  • Lee, Kihoon;So, Hyungmin;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.2
    • /
    • pp.37-44
    • /
    • 2014
  • The most effective method to overcome GPS jamming problem is to use an adaptive array antenna which has the capability of beamforming or nulling to a certain direction. In this paper, Space Time Adaptive Processing (STAP) beamforming algorithm of four elements array antenna will be designed and the anti-jamming performance will be analyzed. According to the analysis, the signal to noise ratio (SNR) and anti-jamming performance can be enhanced by beamforming algorithm. Also, the time tap effect of STAP algorithm will be analyzed theoretically and verified with array antenna modeling and simulation. Specially, the cautious selection of reference time tap in STAP can prevent the degradation of position accuracy performance.

Regional Alternative Navigation Using HALE UAV, Pseudolite & Transceiver (고고도 장기체공 무인기와 의사위성/트랜시버를 활용한 국지적 대체항법에 관한 연구)

  • Choi, Min-woo;Yu, Sun-Kyoung;Kim, O-Jong;Kee, Chang-Don;Park, Byung-Woon;Seo, Seung-Woo;Park, Jun-Pyo
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.499-506
    • /
    • 2015
  • Global navigation satellite systems (GNSS) is operating widely in civil and military area. GNSS signals, however, can be easily interfered because its signal is vulnerable to jamming. Thus, a sort of backup or alternative system is needed in order that the navigation performance is assured to a certain degree in case of GNSS jamming. In order to suggest a series of backup or alternative system of regional navigation, in this paper, we introduced a high altitude long endurance unmanned aerial vehicle (HALE UAV) with pseudolites using inverted GPS and transceiver system. We simulated the positioning error of the regional navigation system using HALE UAV with inverted GPS or transceivers concepts. We estimated the position error of HALE UAV calculate user position errors based on the position error of HALE UAV and general pseudorange error.

Analysis of Influences due to Navigation Message Error of GPS Signals on Receiver (GPS 항법메시지 이상이 수신기에 미치는 영향 분석)

  • Kang, Hee-Won;Cho, Deuk-Jae;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2223-2229
    • /
    • 2010
  • The integrity monitoring of anomalous GPS signal have been researched because of the degradation of GPS satellite performance. It is known that anomalous GPS signal can occur by failure of GPS satellite, sudden increase of ionosphere delay error, SA, wrong modeling for navigation parameters from control segment, and an electromagnetic wave interference, etc. In case of GPS anomaly by satellites can arise from carrier frequency, code and navigation message. In this paper, the scenarios with navigation message errors were made by using GPS simulator, and the influences of GPS navigation message error to receiver were analysed. The anomalies of preamble, bits related TOW count message, subframe ID in HOW, bits related satellite healthy, and the other navigation message errors were described and simulated. Also, the number of satellites, DOP and pseudorange are analyzed to know how the anomalous signal can affect on GPS receiver.