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1. INTRODUCTION

GPS receivers use very weak satellite signals of 1 pW. 

Accordingly, they cannot track satellite signals even at weak 

interference signals, and this has been a major problem 

(Parkinson et al. 1996, Kaplan & Hegarty 2006, Rhee & Seo 

2013). For example, 1 Watt portable jammer can interrupt 

the normal operation of GPS receivers within a 50 km 

radius. The most effective method for overcoming this 

problem is to spatially eliminate interference signals using 

array antennas (Johnson & Dudgeon 1993, Fante & Vaccaro 

2000, Haefner et al. 2003, Kaplan & Hegarty 2006).

An array antenna is a system that can control gains 

depending on incident directions by generating final output 

through multiplying a number of input signals by a weight 

vector. If this is applied to GPS anti-jamming devices, 

the gain in the satellite direction can be conserved while 

minimizing the gain in the incident direction of a jammer. 

The performance of an array antenna is basically determined 

by the number of antenna elements and the arrangement 
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type. In theory, it is known that when the number of 

antenna elements is N, the number of jammers, to which 

anti-jamming can be applied, is N-1. Also, there are the 

arrangement types such as Uniform Linear Array, Uniform 

Rectangular Array, Uniform Circular Array, and Single Ring 

Cylindrical Array. In this study, a four-element circular 

array antenna system, which can process a maximum of 

three broadband jamming signals, is considered in order 

to minimize the size, as shown in Fig. 1. In addition, the 

distance between antenna elements is a major design 

factor, and the half wavelength distance principle, which is 

commonly applied, was used considering mutual coupling 

and nulling regions (Johnson & Dudgeon 1993).

In the previous papers, an Space Time Adaptive Processing 

(STAP) algorithm for array antenna systems, which was 
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Fig. 1. Digital anti-jamming array antenna system.
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extended to time and space domains to extend narrowband 

anti-jamming number, has been used. In this regard, 

a pseudorange tracking error, which determines the 

positioning accuracy of a GPS receiver, occurs. But the cause 

of this error has not been analyzed (Ward 1994, Moore 2002, 

Carlson et al. 2003, Fante et al. 2004). In this study, the cause 

of pseudorange tracking error during the use of an STAP 

algorithm was analyzed, and the performance analysis of 

the STAP algorithm which a beamforming algorithm has 

been added was carried out in terms of signal to noise ratio 

and changes in the characteristics of satellite signals. 

The contents of this paper are as follows. In Chapter 2, an 

STAP beamforming algorithm was derived, and in Chapter 

3 a tap selection technique for preventing pseudorange 

distortion was proposed. In Chapter 4, the results of the 

simulation were presented, and conclusions were included 

in Chapter 5.

2. STAP BEAMFORMING ALGORITHM

2.1 Optimal Weight Vector Algorithm For Array Antenna

An array antenna system generates final output by 

multiplying a number of input signals by a weight vector 

and adding them together. In this regard, the algorithm for 

weight vector determination is a constrained optimization 

problem for the minimization of the objective function, f(w), 

depending on the constraint condition of the variable, w, as 

shown in Eq. (1) (Johnson & Dudgeon 1993).
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w
min (w) subject to (w) 0f g =      (1)

The solution of this constrained optimization problem is one of the stationary points of the 
Lagrangian, and can be obtained using a Lagrangian multiplier (Applebaum & Chapman 1976). 
First, the Lagrangian of Eq. (1) can be expressed as Eq. (2), and the Lagrangian multiplier, 0λ ,
of the stationary points of this can be expressed as Eq. (3). 

(w, ) (w) (w)L f gλ λ= +        (2) 

w 0 0(w , ) 0L λ∇ =         (3) 

The input value measured at the I/Q channel of the four-element array antenna is defined as 
[ ]1 2 3 4x= x  x  x  x T , and the constraint condition of the weight vector, w, is defined as shown in Eq. 

(4). 

w =C c          (4) 
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2
Output Power w x w wH HE R⎡ ⎤= =⎢ ⎥⎣ ⎦

     (5) 

where [ ]E ⋅  represents the expected value, xxHR E ⎡ ⎤= ⎣ ⎦ , and x H  represents the conjugate 
transpose. Using the variables defined above, the constrained optimization problem for the 
minimization of the output power can be expressed as Eq. (6). 

w
min w w wH R subject to C c=       (6) 

To obtain the solution of Eq. (6), a Lagrangian multiplier is calculated. Then the weight 
vector, ow , and the power, P, which are the optimal solution, can be calculated as shown in Eqs. 
(7) and (8). 

( ) 11 1
ow H HR C CR C c

−− −=        (7) 

( ) 11H HP c CR C c
−−=        (8) 

The anti-jamming algorithm of the array antenna basically follows the above equations for 
deriving optimal solution, and the implementation methods are broadly divided into two 
categories. In the first method, the correlation matrix, R , of an input value is estimated, and the 
inverse matrix is obtained. Then the weight vector is directly calculated as shown in Eq. (7). In 
the second method, the weight vector is estimated so that output can be minimized, using a Least 
Mean Square algorithm without the estimation of the correlation matrix, R  (Frost 1972, Lorenzo 
et al. 2005). 
 
2.2 STAP beamforming algorithm

The STAP input shown in Eq. (9) is used for STAP algorithm that is extended to time and 
space domains, which is extended to the time domain by the number of taps T when the input, 

[ ]1 2 3 4x = x  x  x  x T , of the four-element array antenna is used. The remaining processes for 
calculating the optimal weight vector are identical to the method explained above. For an array 
antenna with more than four elements, extension can be performed in a similar way. 

[ ]11 12 1T 21 22 2T 41 42 4Tx= x  x x   x  x x    x  x x T
K K K K    (9) 

The degree of freedom of this STAP algorithm is basically obtained by subtracting the 
number of constraint conditions from the number of free weight vector elements. It is expressed 
as the following equation, where N-1, which is the degree of freedom of the spatial nulling 
algorithm that performs spatial filtering, is extended by T (number of taps) times. 
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conditions from the number of free weight vector elements. 
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2007).  
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which calculates the weight vector considering the steering vector, s, in order to conserve the 
gain and phase in a specific direction (satellite direction) or a specific frequency in Eq. (4) for 
constraint condition. In this regard, the constraint matrix, C, is identical to the steering vector, s,
and the final optimal weight vector can be expressed as Eq. (11). 
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The STAP beamforming algorithm increases the gain in a specific direction, and the 
theoretical gain can be expressed as Eq. (12). In addition, to increase the effect at a specific 
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shown in Fig. 4. This error component is problematic because each satellite has a different 
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filter that has time delay taps. The linear phase of the filter represents the case when the group 
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delay taps. The linear phase of the filter represents the case 

when the group delay, G, of the filter is a constant as shown 

in Eq. (13).

ConstantG
f
φΔ

= =
Δ

                 (13) 

where fΔ  represents the frequency variation, and φΔ  represents the phase variation. 
In the case of a nonlinear phase, each input frequency has a different time delay because a 

phase variation for a frequency variation is not linearly maintained. Therefore, within a satellite 
signal bandwidth, each time delay is different depending on the frequency, and the distortion of 
CCF occurs when correlation functions using replica signals are calculated. To verify this, CCF 
was obtained by inputting only satellite signals and passing them through a 41st-order transversal 
filter. When the signals were passed through a nonlinear phase filter as shown in Fig. 5, the front 
and rear shapes of CCF were non-symmetric, which resulted in a pseudorange error. In contrast, 
when the signals were passed through a linear phase filter as shown in Fig. 6, a time delay 
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Fig. 5. Nonlinear phase 41 taps FIR filter bode plot (blue: amplitude, red: phase) and non-symmetric CCF. 

Fig. 6. Linear phase 41 taps FIR filter bode plot (blue: amplitude, red: phase) and symmetric CCF. 
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Fig. 5. Nonlinear phase 41 taps FIR filter bode plot (blue: amplitude, red: phase) and non-symmetric CCF.
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also applies to the STAP algorithm, and it indicates that 

linear phase characteristics can be obtained when the 

center tap is selected in the process of obtaining a weight 

vector using a correlation matrix, as shown in the following 

equations. In other words, the weight vector, w
o
, is to select a 

specific column of R-1, and only the center column of R-1 has 

symmetry characteristics.
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was obtained by inputting only satellite signals and passing them through a 41st-order transversal 
filter. When the signals were passed through a nonlinear phase filter as shown in Fig. 5, the front 
and rear shapes of CCF were non-symmetric, which resulted in a pseudorange error. In contrast, 
when the signals were passed through a linear phase filter as shown in Fig. 6, a time delay 
occurred, but the front and rear shapes of CCF were symmetric with the same power, which did 
not result in a pseudorange error when the Early minus Late tracking technique was used.  
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where s represents the vector that located the satellite direction steering elements, 
1 2 3 4, , ,s s s s , at 

the center tap. 
Fig. 7 shows the CCF correlation function of the satellite obtained after eliminating the 

jamming signals when the weight vector that selected the center tap was used so that the STAP 
algorithm could have linear phase characteristics. As shown in the figure, the Early and Late 
correlation values were symmetric, and thus pseudorange distortion did not occur. On the other 
hand, there was some time delay, but this is not problematic because it is common to every 
satellite. In conclusion, the number of taps for the STAP algorithm should be an odd number, 
and satellite navigation errors can be minimized when the center tap is selected as the reference 
tap.

4. SIMULATION

In this chapter, a simulation was performed by locating jamming signals at an azimuth angle 
of 0˚ and an elevation angle of 10˚, and by locating satellite signals at an azimuth angle of 180˚
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filter with time delay taps to have linear phase characteristics, the filter coefficient should consist 
of symmetry (Haykin 1996, Bellanger 2000). This also applies to the STAP algorithm, and it 
indicates that linear phase characteristics can be obtained when the center tap is selected in the 
process of obtaining a weight vector using a correlation matrix, as shown in the following 
equations. In other words, the weight vector, ow , is to select a specific column of -1R , and only 
the center column of -1R  has symmetry characteristics. 

R : Symmetric matrix (Hermitian)                                                            (14) 
1R− : Symmetric matrix (Hermitian)                                                             (15) 

1

o 1w H

R s
s R s

−

−= : Symmetric if [ ]1 2 3 40 0 0 0 0 0 0 0 Ts s s s s= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅                         (16) 

where s represents the vector that located the satellite direction steering elements, 
1 2 3 4, , ,s s s s , at 

the center tap. 
Fig. 7 shows the CCF correlation function of the satellite obtained after eliminating the 

jamming signals when the weight vector that selected the center tap was used so that the STAP 
algorithm could have linear phase characteristics. As shown in the figure, the Early and Late 
correlation values were symmetric, and thus pseudorange distortion did not occur. On the other 
hand, there was some time delay, but this is not problematic because it is common to every 
satellite. In conclusion, the number of taps for the STAP algorithm should be an odd number, 
and satellite navigation errors can be minimized when the center tap is selected as the reference 
tap.

4. SIMULATION

In this chapter, a simulation was performed by locating jamming signals at an azimuth angle 
of 0˚ and an elevation angle of 10˚, and by locating satellite signals at an azimuth angle of 180˚

, at the center tap.

Fig. 7 shows the CCF correlation function of the satellite 

obtained after eliminating the jamming signals when the 

weight vector that selected the center tap was used so that 

the STAP algorithm could have linear phase characteristics. 

As shown in the figure, the Early and Late correlation values 

were symmetric, and thus pseudorange distortion did 

not occur. On the other hand, there was some time delay, 

but this is not problematic because it is common to every 

satellite. In conclusion, the number of taps for the STAP 

algorithm should be an odd number, and satellite navigation 

errors can be minimized when the center tap is selected as 

the reference tap.

4. SIMULATION

In this chapter, a simulation was performed by locating 

jamming signals at an azimuth angle of 0˚ and an elevation 

angle of 10˚, and by locating satellite signals at an azimuth 

angle of 180˚ and an elevation angle of 50˚ to examine STAP 

beamforming effects under the condition summarized in 

Table 1. 

Figs. 8 and 9 show the gain pattern and phase pattern 

when a simple power minimization technique without 

beamforming was applied. Jamming signals were completely 

eliminated, but a phase shift of -60˚ occurred at an azimuth 

angle of 180˚ and an elevation angle of 50˚, which was the 

satellite direction. On the other hand, the satellite signal 

SNR was calculated to be about 16 dB as shown in Fig. 10. 

This was determined by the gain pattern shown in Fig. 8, 

and was similar to the input signal SNR (15 dB) of a single 
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antenna in Table 1. In other words, the satellite signal SNR 

was normal, but the phase value changed depending on the 

incident direction of satellite signals as shown in the phase 

pattern. Thus, it would be problematic for systems using a 

Table 1. Simulation conditions.
Conditions Description

Satellite signal SNR (Single antenna)
Jammer JNR
Antenna element number
STAP’s tap number
Array type
Array distance
IF frequency 
Sampling frequency

15 dB
20 dB

4
5

Circular
9.5 cm

0 Hz (Baseband)
20 MHz
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carrier phase.

Figs. 11 and 12 show the gain pattern and phase pattern 

for the STAP technique using beamforming. For the gain 

pattern in Fig. 11, the gain in the satellite direction was 

about 6 dB. From this figure, it was found that the maximum 

gain was maintained in the satellite direction. The phase 

pattern was calculated as shown in Fig. 12, and it was 
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maintained at 0˚ in the satellite direction. If beamforming 

is performed in a different satellite direction, the phase is 

maintained at 0˚ in the direction, and a phase shift does not 

occur. The satellite signal SNR was calculated to be 21 dB as 

shown in Fig. 13. The value was 5 dB higher than that of the 

power minimization technique mentioned above, and was 6 

dB higher than the input signal of a single antenna in Table 

1. This was identical to the gain (6 dB) of the four-element 

array antenna calculated using Eq. (12). Thus, it was also 

consistent with the theoretical value.

As shown above, the STAP beamforming technique, 

which forms a beam in the satellite direction, can prevent 

a phase shift as well as can enhance satellite signals. This 

technique conserves signals in the satellite direction, and 

enhances SNR. Therefore, it is an efficient technique which 

can improve anti-jamming performance.

On the other hand, the CCF was symmetric as shown in 

Figs. 10 and 13, which were the results of the STAP algorithm 
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that selected the center tap. Therefore, a pseudorange error 

did not occur similar to the results of Chapter 3.

5. CONCLUSIONS

In this study, an STAP beamforming algorithm for an 

array antenna system, which had been extended to time and 

space domains to increase the narrowband anti-jamming 

number, was analyzed. The cause of a pseudorange tracking 

error during the use of the STAP algorithm was theoretically 

analyzed, and a tap selection technique for preventing this 

was proposed. In addition, the performance analysis of the 

STAP algorithm, to which a beamforming algorithm had 

been added, was carried out in terms of SNR and phase 

measurements. It was found that the SNR was improved by 

the beamforming algorithm, and this could enhance anti-

jamming performance. Also, the beamforming algorithm 

can prevent the shift of carrier phase measurements. 

Therefore, it could be applied to a reference position survey 

system or a precise navigation system.
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