• Title/Summary/Keyword: pseudomonas putida

Search Result 298, Processing Time 0.023 seconds

Viability test hydrocarbon-degrading bacterium by carriers according to temperature conditions

  • 박진희;김영식;여인봉;박기영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.203-208
    • /
    • 2002
  • 미생물 생산은 다양한 산업에 이용되는 핵심산업이다. 그러나 미생물을 장기간 보존하거나 생산 후 현장처리에 상황에 있어 미생물의 활성이 환경 및 각종조건에 따라 장기간 유지되지 못하는 경향이 있다. 따라서, 본 실험에서는 Pseudomonas putida SSEoX의 생산 후 시중에서 판매되는 perlite, diatomite, bentonite, zeolite, dolomite, vermicullite 등의 담체를 이용하여 미생물의 생리활성유지를 위한 실험을 자연현상에서 나타날 수 있는 다양한 온도에서 담체의 종류별로 수행하였다. 그 결과 bentonite를 이용한 담체의 경우 5, 20, 3$0^{\circ}C$에서 40일간 미생물의 밀도가 거의 감소하지 않은 결과로 나타났고 zeolite의 경우 20일 이내의 저온에서 생존율이 높은 것으로 나타났으나 온도의 상승으로 생존율이 현저히 떨어졌다. 또한 Dololite의 경우 초기 20일 내에서는 20t에서 생존율이 매우 높았으나 40일 후 생존율이 현저히 감소하였다. 또한 bentonite의 경우 전체적으로 생존율이 거의 감소되지 않았으며 그중 5$^{\circ}C$와 2$0^{\circ}C$에서 생존율이 가장 높았고 3$0^{\circ}C$에서 30일 후까지는 비교적 적은 감소를 보였으며 40일 이후 비교적 큰 감소율이 있었다. 따라서, 본 실험결과 비교적 낮은 온도에서 bentonite와 vermiculite를 혼합한 담체를 이용한 미생물보존이 가장 우수만 생존유지법이었다.

  • PDF

Biotransformation of Flavone by CYP105P2 from Streptomyces peucetius

  • Niraula, Narayan Prasad;Bhattarai, Saurabh;Lee, Na-Rae;Sohng, Jae Kyung;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1059-1065
    • /
    • 2012
  • Biocatalytic transfer of oxygen in isolated cytochrome P450 or whole microbial cells is an elegant and efficient way to achieve selective hydroxylation. Cytochrome P450 CYP105P2 was isolated from Streptomyces peucetius that showed a high degree of amino acid identity with hydroxylases. Previously performed homology modeling, and subsequent docking of the model with flavone, displayed a reasonable docked structure. Therefore, in this study, in a pursuit to hydroxylate the flavone ring, CYP105P2 was co-expressed in a two-vector system with putidaredoxin reductase (camA) and putidaredoxin (camB) from Pseudomonas putida for efficient electron transport. HPLC analysis of the isolated product, together with LC-MS analysis, showed a monohydroxylated flavone, which was further established by subsequent ESI/MS-MS. A successful 10.35% yield was achieved with the whole-cell bioconversion reaction in Escherichia coli. We verified that CYP105P2 is a potential bacterial hydroxylase.

Unexpected Isolation of Leclercia Adecarboxylata in Dermatitis of a Dog

  • Jung, Hansol;Cho, Hyunkee;Lee, June Bong;Yoon, Jang Won;Chung, Jin-Young
    • Journal of Veterinary Clinics
    • /
    • v.34 no.5
    • /
    • pp.381-383
    • /
    • 2017
  • A two-year-old intact male Labrador retriever was presented with generalized erythema, pustule and pruritus. A skin screening test revealed that there were no fleas but bacteria and dermatophytes were present. Blood testing revealed no remarkable findings. The patient was prescribed systemic medication of enrofloxacin 30 mg/kg once a day and itraconazole 10 mg/kg once a day and topical medication of 2% chlorhexidine shampoo twice a week for 2 weeks. Two weeks after the prescription, aerobic culture confirmed that the bacteria were Leclercia Adecarboxylata and Pseudomonas putida was sensitive to enrofloxacin. Therefore, more medicine was prescribed for 4 weeks to alleviate clinical signs. After six weeks of medication, clinical signs were alleviated and skin screening test revealed no remarkable findings. Bacterial and fungal skin infections are common in dogs. However, there are no reports of Leclercia Adecarboxylata infection even in gastrointestinal tract in veterinary medicine. This is the first report of Leclercia Adecarboxylata infection in dogs. This report proved that Leclercia Adecarboxylata can cause skin problem in dogs.

The Characteristics of Bioremediation for VOCs in Soil Column (VOCs처리를 위한 미생물의 토양복원화 특성)

  • 손종렬;장명배
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.9-12
    • /
    • 2002
  • Diffusive transport of volatile organic compounds(VOCs) and their degradation by bacteria in unsaturated soils are couple by poorly understood mass transfer kinetics at the gas/water interface. Determination of the fate of VOCs in unsaturated soil is necessary to evaluate the feasibility of natural attenuation as a VOC remediation strategy. The objective of this study was to develop a mechanistically based mathematical model that would consider the interdependence of VOC transport, microbial activity, and sorptive interaction in a moist, unsaturated soil. Because the focus of the model was on description of natural attenuation, the advective VOC transport that is induced in engineered remediation processes such as vapor extraction was not considered. The utility of the model was assessed through its ability to describe experimental observations form diffusion experiments using toluene as a representative VOC in well-defined soil columns that contained a toluene degrading bacterium, Pseudomonas Putida, as the sole active microbial species. The coefficient for gas-liquid mass-transfer, K$\sub$LA/, was found to be a key parameter controlling the ability of bacteria to degrade VOCs. This finding indicates that soil size and geometry are likely to be important parameters in assessing the possible success of natural attenuation of VOCs in contaminated unsaturated soils.

  • PDF

The Cell Viability on Kelp and Fir Biochar and the Effect on the Field Cultivation of Corn

  • Boakye, Patrick;Lee, Chul Woo;Lee, Won Mook;Woo, Seung Han
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • Field cultivation of corn and microbial cell viability tests using Pseudomonas putida K-5 were performed to assess the toxic effect of kelp seaweed biochar (KBC) and fir wood biochar (FBC) produced by pyrolysis. After 63 days growth, FBC increased corn growth by 4.9% without fertilizer and by 7.6% with fertilizer, while KBC decreased it by 20.2% without fertilizer and by 27.9% with fertilizer. Physico-chemical characterization of the biochars such as ICP, CHON, and proximate analyses showed that KBC contained large amount of metals and ashes which could be responsible for its inhibition to corn growth. Upon exposure of K-5 cells for 1 h to biochar extracts, the cell viability in KBC extracts was 48.2% and quite lower than that (78.6%) in FBC. Washed KBC biochar with water at 1:10 w/v % increased the cell viability to 54.0%. The results indicated that seaweed biochar may be careful to be used for plant growing additives due to its high concentrations of metals and ashes. This toxic effect could be reduced by proper washing method with water.

Pathogenic bacteria causing rot in commercial soybean sprout cultivation

  • Yun, Sung-Chul;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • Soybean sprout pathogenic bacteria were isolated from the large, deep containers of a commercial factory. Over a period of one year, 40 pathogenic-like bacteria were isolated among a total of 732 isolates. In addition to bacteria previously reported to be associated with rotting, such as Pseudomonas putida and Erwinia carotovora, several other genera were also identified: Acinetobacter spp., Chryseobacterium spp., Klebsiella sp., Pantoea agglomerans, Bacillus sp. Fatty acid methyl ester (FAME) analysis using the Microbial ID (MIDI) system, and 16s rRNA sequence analysis, yielded identical results, confirming the identities of these microorganisms. Several types of selective media were not good for identification and determination of population structure in commercial environments, as colony type was not specific to the genus. There was no dominant bacterium, and we were not able to find the main bacterium responsible for soybean spout rot. Even though we did not identify a major target for controlling rot or screening for resistant cultivars, the results of this study indicated that bacterial rot of soybean sprout is endemic. In addition, it emerged that factory epidemics in summer are not caused by the bacteria isolated in this study.

Effects of Predator Addition to the Algicidal Bacterium in Controlling Diatom Sephanodiscus hantzschii Dominating the Eutrophic Pal′tang Reservoir, Korea (살조세균과 초식성 섭식자의 혼합배양에 의한 녹조제어효과)

  • Kim Baik-Ho;Ka Soon-Kyu;Han Myung-Soo
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.23-29
    • /
    • 2004
  • An algicidal effect of endemic algicidal bacterium (Pseudomonas putida) and rotifer zooplankton (Brachionus calyciflorus) on diatom Stephanodiscus hantzschii were examined in the filtered water, and were compared with those of bacterium plus ciliate. Bacteria removed as 80% of the diatom within 3.5 days, while ciliate and zooplankton suppressed 57% and 40% of diatom during the same period, respectively. Mixed treatment of bacteria plus ciliate removed as 54% of diatoms, while that of bacteria plus zooplankton decreased as 85%. Although single bacteria and mixed treatment of bacteria plus zooplankton quickly decreased the diatom in the initial of experiment, bacteria plus ciliate perfectly removed the diatom in culture flask within 5.5 days of the study. On the other hand, other single and mixed treatments did not clear the diatom during the same period, and over 10% of them still remain in culture flask. Predator biomass in the presence of algicidal bacteria showed the growth patterns; zooplankton gradually decreased, and ciliate sustained over 0.5 cells/ml. These results indicated that the addition of ciliate to the algicidal bacterium in controlling the diatom Stephanodiscus hantzschii is more effective than that of zooplankton. Therefore, this synergistic interaction relationship between the bacterium and ciliate play an important role in the bio-manipulation using bio-agents to control the diatomal bloom in freshwater lakes and streams.

Effects of Heavy Metals on Biomonitoring using Recombinant Bioluminescence Bacteria (유전자재조합균주를 이용한 생물모니터링에 중금속 오염물이 미치는 영향 평가)

  • Kong, In Chul;Kim, Jin Young;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.32-39
    • /
    • 2013
  • This research focused on the effects of heavy metals on the biomonitoring activity of genetically engineered bioluminescent bacteria, Pseudomonas putida mt-2 KG1206. KG1206 was exposed to single or binary mixtures of different heavy metals as well as soils contaminated with heavy metals. In case of single exposure with different inducer pollutant, the toxicity order was as followings : As(III) > Cd, As(V) >> Cu, Cr(VI). The toxic effects of the binary mixtures was compared to the expected effect based on a simple theory of probabilities. The interactive effects were mostly additive, while in few cases antgonistic and synergistic mode of action was observed for some concentration combinations. No considerable correlation was found between the total metal contents in soils and the bioluminescence activity of each sample. However, statistically significant differences (p = 0.0102) were observed between two groups, classified based on arsenite contamination. These results demonstrate the usage of recombinant bioluminescent microorganism in biomonitoring and the complex interactive effects of metals.

$H_{2}$ production of photosynthetic bacteria transferred TOL plasmid from flavobacterium odoratum (Flavobacterium odoratum의 TOL 플라스미드를 전달받은 광합성세균으로부터의 수소 생성)

  • 오순옥;조인성;이희경;민경희
    • Korean Journal of Microbiology
    • /
    • v.29 no.6
    • /
    • pp.408-415
    • /
    • 1991
  • TOL plsmid size of Flavobacterium odoratum SUB53 was estimated as 83 Md and the optimum concentration of m-toluate degradation by TOL plasmid was 5 mM. $H_{2}$ production by Rhodopseudomonas sphaeroides KCTC1425 was largely dependent on nitrogenase activity and showed the highest at 30 mM malate with 7 mM glutamate as nitrogen source. Nitrogenase activities were inhibited by 0.3 mM $NH_{4}^{+}$ions, to be appeared the decrease of $H_{2}$ production. Conjugation of TOL plasmids from F. odoratum SUB53 and Pseudomonas putida mt-2 to R. sphaeroides showed the optimum at the exponential stage of recipient cells in presence of helper plasmid pRK2013. According to the investigation of catechol-1,2-oxygenase (C-1, 2-O) and catechol-2,3-oxygenase (C-2,3-O) activities of R. sphaeroides C1 (TOL SUB53) and C2 (TOL mt-2), the gene for C-2,3-O is located on TOL plasmid and gene for C-1, 2-O on the chromosome of R. sphaeroides. m-Toluate was biodegraded by TOL plasmid in R. sphaeroides C1 and C2, presumably to be produced $H_{2}$ gas from the secondary metabolites of m-toluate.e.

  • PDF

Cloning, Sequence Analysis, and Characterization of the astA Gene Encoding an Arylsulfate Sulfotransferase from Citrobacter freundii

  • Kang, Jin-Wook;Jeoung, Yeon-Joo;Kwon, Ae-Ran;Yun, Hee-Jeong;Kim, Dong-Hyun;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.24 no.4
    • /
    • pp.316-322
    • /
    • 2001
  • Arylsulfate sulfotransferase (ASST) transfers a sulfate group from a phenolic sulfate ester to a phenolic acceptor substrate. In the present study, the gene encoding ASST was cloned from a genomic library copy of Citrobacter freundii, subcloned into the vector pGEM3Zf(-) and sequenced. Sequencing revealed two contiguous open reading frames (ORF1 and ORF2) on the same strand and based on amino acid sequence homologyl they were designated as astA and dsbA, respectively. The amino acid sequence of astA deduced from C. freundii was highly similar to that of the Salmonella typhimurium, Enterobacter amnigenus, Klebsiella, Pseudomonas putida, and Campylobacter jejuni, encoded by the astA genes. However, the ASST activity assay revealed different acceptor specificities. Using p-nitrophenyl sulfate (PNS) as a donor substrate, $\alpha$-naphthol was found to be the best acceptor substrate, followed by phenol, resorcinol, p-acetaminophen, tyramine and tyrosine.

  • PDF