Browse > Article
http://dx.doi.org/10.4014/jmb.1201.01037

Biotransformation of Flavone by CYP105P2 from Streptomyces peucetius  

Niraula, Narayan Prasad (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University)
Bhattarai, Saurabh (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University)
Lee, Na-Rae (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University)
Sohng, Jae Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University)
Oh, Tae-Jin (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.8, 2012 , pp. 1059-1065 More about this Journal
Abstract
Biocatalytic transfer of oxygen in isolated cytochrome P450 or whole microbial cells is an elegant and efficient way to achieve selective hydroxylation. Cytochrome P450 CYP105P2 was isolated from Streptomyces peucetius that showed a high degree of amino acid identity with hydroxylases. Previously performed homology modeling, and subsequent docking of the model with flavone, displayed a reasonable docked structure. Therefore, in this study, in a pursuit to hydroxylate the flavone ring, CYP105P2 was co-expressed in a two-vector system with putidaredoxin reductase (camA) and putidaredoxin (camB) from Pseudomonas putida for efficient electron transport. HPLC analysis of the isolated product, together with LC-MS analysis, showed a monohydroxylated flavone, which was further established by subsequent ESI/MS-MS. A successful 10.35% yield was achieved with the whole-cell bioconversion reaction in Escherichia coli. We verified that CYP105P2 is a potential bacterial hydroxylase.
Keywords
Cytochrome P450; flavone; redox partner; Streptomyces peucetius; whole-cell biotransformation;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Boue, M. S., H. C. Carter-Wientjes, Y. B. Shih, and E. T. Cleveland. 2003. Identification of flavone aglycones and glycosides in soybean pods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 991: 61-68.   DOI   ScienceOn
2 Canivenc-Lavier, M. C., M. Bentejac, M. L. Miller, J. Leclerc, M. H. Siess, N. Latruffe, and M. Suschetet. 1996. Differential effects of nonhydroxylated flavonoids as inducers of cytochrome P450 1A and 2B isozymes in rat liver. Toxicol. Appl. Pharmacol. 136: 348-353.   DOI   ScienceOn
3 Chen, L. J., D. E. Games, J. Jones, and H. Kidwell. 2003. Separation and identification of flavonoids in an extract from the seeds of Oroxylum indicum by CCC. J. Liq. Chromatogr. Relat. Technol. 26: 1623-1636.   DOI   ScienceOn
4 Ciolino, H. P., T. T. Wang, and G. C. Yeh. 1998. Diosmin and diosmetin are agonists of the aryl hydrocarbon receptor that differentially affect cytochrome P450 1A1 activity. Cancer Res. 58: 2754-2760.
5 Das, S. and P. N. R. John. 2006. Microbial and enzymatic transformations of flavonoids. J. Nat. Prod. 69: 499-508.   DOI   ScienceOn
6 Gotoh, O. 1992. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267: 83-90.
7 Green, A. J., A. W. Munro, M. R. Cheesman, G. A. Reid, C. von Wachenfeldt, and S. K. Chapman. 2003. Expression, purification and characterization of a Bacillus subtilis ferredoxin: A potential electron transfer donor to cytochrome P450. Biol. J. Inorg. Biochem. 3: 92-99.
8 Gunsalus, I. C. and S. G. Sligar. 1978. Oxygen reduction by the P450 monoxygenase systems. Adv. Enzymol. Relat. Areas Mol. Biol. 47: 1-44.
9 Hannemann, F., A. Bichet, K. M. Ewen, and R. Bernhardt. 2007. Cytochrome P450 systems - biological variations of electron transport chains. Biochim. Biophys. Acta 1770: 330-344.   DOI   ScienceOn
10 Hodek, P., P. Trefil, and M. Stiborova. 2002. Flavonoids - potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact. 139: 1-21.   DOI   ScienceOn
11 Hosny, M., K. Dhar, and J. P. Rosazza. 2001. Hydroxylations and methylations of quercetin, fisetin and catechin by Streptomyces griseus. J. Nat. Prod. 64: 462-465.   DOI   ScienceOn
12 Hosny, M. and J. P. N. Rosazza. 1999. Novel isoflavone, cinnamic acid, and triterpenoid glycosides in soybean molasses. J. Nat. Prod. 62: 1609-1612.   DOI   ScienceOn
13 Hur, H. and F. Rafii. 2000. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol. Lett. 192: 21-25.   DOI   ScienceOn
14 Ibrahim, A. R. and Y. Abul-Hajj. 1990. Microbiological transformation of chromone, chromanone, and ring A hydroxyflavones. J. Nat. Prod. 53: 1471-1478.   DOI
15 Ibrahim, A. R. and Y. Abul-Hajj. 1990. Microbiological transformation of flavone and isoflavone. J. Xenobiot. 20: 363-373.   DOI   ScienceOn
16 Modi, S., M. J. Sutcliffe, W. U. Primrose, L. Y. Lian, and G. C. Roberts. 1996. The catalytic mechanism of cytochrome P450 BM3 involves a 6 Å movement of the bound substrate on reduction. Nat. Struct. Biol. 3: 414-417.   DOI   ScienceOn
17 Kanth, B. K., K. Liou, and J. K. Sohng. 2010. Homology modeling; binding site identification and docking in flavone hydroxylase CYP105P2 in Streptomyces peucetius ATCC 27952. Comp. Biol. Chem. 34: 226-231.   DOI   ScienceOn
18 Kasai, N., S. Ikushiro, S. Hirosue, A. Arisawa, H. Ichinose, Y. Uchida, et al. 2010. Atypical kinetics of cytochromes P450 catalysing 3'-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium. J. Biochem. 147: 117-125.   DOI   ScienceOn
19 Ma, Y. L., Q. M. Li, H. Van den Heuvel, and M. Claeys. 1997. Characterization of flavone and flavonol aglycones by collisionreduced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11: 1357-1364.   DOI   ScienceOn
20 Nelson, D. R., L. Koymans, T. Kamataki, J. J. Stegeman, R. Fevereisen, D. J. Waxman, et al. 1996. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6: 1-42.   DOI   ScienceOn
21 Omura, T. and R. Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378.
22 Park, Y., L. Sunhee, W. Yoonkyung, and L. Yoongho. 2009. Relationships between structure and anti-oxidative effects of hydroxyflavones. Bull. Korean Chem. Soc. 30: 1397-1400.   DOI   ScienceOn
23 Peterson, J. A., M. C. Lorence, and B. Amarneh. 1990. Putidaredoxin reductase and putidaredoxin: Cloning, sequence determination, and heterologous expression of the proteins. J. Biol. Chem. 265: 6066-6073.
24 Sariaslani, F. S., L. R. McGee, M. K. Trower, and F. G. Kitson. 1990. Lack of region- and stereospecificity in oxidation of (+) camphor by Streptomyces griseus enriched in cytochrome P- 450soy. Biochem. Biophys. Res. Commun. 170: 456-461.   DOI   ScienceOn
25 Roh, C., K. Y. Choi, B. P. Pandey, and B. G. Kim. 2009. Hydroxylation of daidzein by CYP107H1 from Bacillus subtilis 168. J. Mol. Catal. B Enzym. 59: 248-253.   DOI   ScienceOn
26 Rujisenaars, H. J., E. M. Sperling, P. H. Wiegerinck, F. T. Brands, J. Wery, and J. A. de Bont. 2007. Testosterone 15Bhydroxylation by solvent tolerant Pseudomonas putida S12. J. Biotechnol. 131: 205-208.   DOI   ScienceOn
27 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
28 Seitz, C., S. Ameres, and G. Forkmann. 2007. Identification of the molecular basis for the functional difference between flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase. FEBS Lett. 581: 3429-3434.   DOI   ScienceOn
29 Shinodo, K., Y. Ohnishi, H. K. Chun, H. Takahashi, M. Hayashi, A. Saito, et al. 2001. Oxygenation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes. Biosci. Biotechnol. Biochem. 65: 2472-2481.   DOI   ScienceOn
30 Shrestha, P., T.-J. Oh, K. Liou, and J. K. Sohng. 2008. Cytochrome P450 (CYP105F2) from Streptomyces peucetius and its activity with oleandomycin. Appl. Microbiol. Biotechnol. 79: 555-562.   DOI   ScienceOn
31 Sthapit, B., T.-J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng. 2004. Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206.   DOI   ScienceOn
32 Uno, T., O. Sota, M. Satoko, I. Atsushi, U. Yuichi, N. Masahiko, et al. 2008. Bioconversion of small molecules by cytochrome P450 species expressed in Escherichia coli. Biotechnol. Appl. Biochem. 50: 165-171.   DOI   ScienceOn
33 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.   DOI   ScienceOn
34 Ueno, M., M. Yamashita, M. Hashimoto, M. Hino, and A. Fujie. 2005. Oxidative activities of heterologously expressed CYP107B1 and CYP105D1 in whole-cell biotransformation using Streptomyces lividans TK24. J. Biosci. Bioeng. 100: 567-572.   DOI   ScienceOn