• 제목/요약/키워드: pseudo-dynamic

검색결과 285건 처리시간 0.022초

유사동적 실험에 의한 철근콘크리트 교각의 주철근 겹이음에 따른 한정연성능력 (Limited Ductile Capacity of Reinforced Concrete Bridge Pier with Longitudinal Steel Lap-splicing by Pseudo Dynamic Test)

  • 박창규;박진영;조대연;이대형;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.885-890
    • /
    • 2002
  • Pseudo dynamic test is an on-line computer control method to achieve the realism of shaking table test with the economy and versatility of the conventional quasi-static approach. Pseudo dynamic tests of four full-size RC bridge piers have been carried out to investigate their seismic performance. For the purpose of precise evaluation, the experimental investigation was conducted to study the seismic performance of the real size specimen, which is constructed for highway bridge piers in Korean peninsula. Since it is believed that Korea belongs to the moderate seismicity region, three test specimens were designed in accordance with limited ductility design concept. Another one test specimen was nonseismically designed according to a conventional code. Important test parameters were transverse reinforcement and lap splicing. Lap splicing was frequently used in the plastic hinge region of many bridge columns. Furthermore, the seismic design code is not present about lap splice in Korean Roadway Bridge Design Code. The results show that specimens designed according to the limited ductility design concept exhibit higher seismic resistance. Specimens with longitudinal steel lap splice in the plastic hinge region appeared to significantly fail at low ductility level.

  • PDF

원전 기초지반의 지진안정성 평가 모델 연구 (The Study on Seismic Stability Evaluation Model for Rock Foundation of Nuclear Power Plant)

  • 황성춘;장정범
    • 한국지진공학회논문집
    • /
    • 제9권4호
    • /
    • pp.1-10
    • /
    • 2005
  • 본 연구의 목적은 국내 실정에 적합한 원전 기초지반의 지진안정성을 평가할 수 있는 적절한 해석모델을 제시하는 것이다 입력지진의 작용방향, 경계조건, 해석모델의 폭 및 깊이, 단층연약대의 모델링방법 등의 해석조건에 대하여 활동면해석법, 등가정적해석법, 동적해석법을 적용하였다. 해석결과 측면경계조건은 등가정적 해석시 수평롤러, 동적해석시 전달경계, 해석영역의 폭은 구조물 폭의 5배 이상, 깊이는 구조물 폭의 2배 이상을 적용하는 것이 바람직한 것으로 나타났다.

슬릿형 댐퍼를 부착한 철골조 시스템의 가동적 지진응답실험 (Pseudo Dynamic Earthquake Response Tests on Steel Frames with Slit Plate Damper)

  • 이승재;박재성;오상훈;유홍식
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.145-150
    • /
    • 2008
  • 본 연구는 설계가 간편하고 경제성을 확보하면서 구조안전성을 동시에 확보할 수 있는 댐퍼시스템을 제안하고, 지진응답특성을 실증적으로 파악하는 것을 목적으로 한다. 이를 위하여, 실대형 1층 철골조 실험체 3개를 설계 및 제작하여 가동적 지진응답실험을 수행하였다. 본 연구에서 제안하는 슬릿형 댐퍼를 제진요소로 사용하는 경우, 주구조체에 비하여 높은 강성을 갖는 댐퍼가 소폭의 변위에 먼저 소성화 함으로써 이력에 의한 지진에너지를 흡수할 수 있으며, 지진응답에서 유리한 것이 판명되었다.

  • PDF

Pseudo-dynamic test of the steel frame - Shear wall with prefabricated floor structure

  • Han, Chun;Li, Qingning;Jiang, Weishan;Yin, Junhong;Yan, Lei
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.431-445
    • /
    • 2016
  • Seismic behavior of new composite structural system with a fabricated floor was studied. A two-bay and three-story structural model with the scale ratio of 1/4 was consequently designed. Based on the proposed model, multiple factors including energy dissipation capacity, stiffness degradation and deformation performance were analyzed through equivalent single degree of freedom pseudo-dynamic test with different earthquake levels. The results show that, structural integrity as well as the effective transmission of the horizontal force can be ensured by additional X bracing at the bottom of the rigidity of the floor without concrete topping. It is proved that the cast-in-place floor in areas with high seismic intensity can be replaced by the prefabricated floor without pouring surface layer. The results provide a reliable theoretical basis for the seismic design of the similar structural systems in engineering application.

Pseudo-dynamic and cyclic loading tests on a steel-concrete vertical hybrid structure

  • Wang, Bo;Wu, Tao;Dai, Huijuan;Bai, Guoliang;Wu, Jian
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.399-409
    • /
    • 2019
  • This paper presents the experimental investigations on the seismic performance of a peculiar steel-concrete vertical hybrid structural system referred to as steel truss-RC tubular column hybrid structure. It is typically applied as the supporting structural system to house air-cooled condensers in thermal power plants (TPPs). Firstly, pseudo-dynamic tests (PDTs) are performed on a scaled substructure to investigate the seismic performance of this hybrid structure under different hazard levels. The deformation performance, deterioration behavior and energy dissipation characteristics are analyzed. Then, a cyclic loading test is conducted after the final loading case of PDTs to verify the ultimate seismic resistant capacity of this hybrid structure. Finally, the failure mechanism is discussed through mechanical analysis based on the test results. The research results indicate that the steel truss-RC tubular column hybrid structure is an anti-seismic structural system with single-fortification line. RC tubular columns are the main energy dissipated components. The truss-to-column connections are the structural weak parts. In general, it has good ductile performance to satisfy the seismic design requirements in high-intensity earthquake regions.

Seismic response of vertical shafts in multi-layered soil using dynamic and pseudo-static analyses

  • Kim, Yongmin;Lim, Hyunsung;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.269-277
    • /
    • 2020
  • In this study, numerical analyses were conducted to investigate the load transfer mechanisms and dynamic responses between the vertical shaft and the surrounding soil using a dynamic analysis method and a pseudo-static method (called response displacement method, RDM). Numerical solutions were verified against data from the literature. A series of parametric studies was performed with three different transient motions and various surrounding soils. The results showed that the soil stratigraphy and excitation motions significantly influenced the dynamic behavior of the vertical shaft. Maximum values of the shear force and bending moment occurred near an interface between the soil layers. In addition, deformations and load distributions of the vertical shaft were highly influenced by the amplified seismic waves on the vertical shaft constructed in multi-layered soils. Throughout the comparison results between the dynamic analysis method and the RDM, the results from the dynamic analyses showed good agreement with those from the RDM calculated by a double-cosine method.

초고층 빌딩과 인접 지하구조물의 SSI를 고려한 동적해석과 유사정적해석의 거동 비교 연구 (A comparative study on the behavior of dynamic analysis and pseudo-static analysis considering SSI of a tall building and an adjacent underground structure)

  • 유광호;김승진
    • 한국터널지하공간학회 논문집
    • /
    • 제20권4호
    • /
    • pp.671-686
    • /
    • 2018
  • 최근 경주, 포항 인근에서 지진이 발생하여 대도시의 초고층 빌딩과 그에 인접한 지하구조물의 내진해석에 대한 사회적 요구가 증가하고 있다. 그러나 기존에 수행되어 왔던 대부분 내진해석 연구는 초고층 빌딩과 지하구조물을 개별적으로 분석하여 구조물간 동적 상호거동 연구가 부족한 실정이다. 따라서 본 연구에서는 기반암과 표층으로 이루어진 지반에 건물과 인접 지하구조물이 설치된 복합지하시설물을 대상으로 지반과 구조물을 동시에 고려한 동적해석을 수행하였다. 특히 신뢰도를 높이기 위해 유사정적해석을 추가로 수행하여 동적해석 결과와 비교 분석하였다. 종합적으로 복합시설물에 대한 SSI 해석 시 인접 지하구조물을 고려하는 것이 보다 보수적인 방법이라고 결론 내렸다.

10 mm급 원형 마이크로스피커의 가상 스피커 TS 매개변수 규명 (Thiele Small Parameters Estimation for Pseudo Loudspeaker within 10 mm Grade Circular-type Microspeaker)

  • 박석태
    • 한국소음진동공학회논문집
    • /
    • 제17권11호
    • /
    • pp.1112-1118
    • /
    • 2007
  • It was discussed to identify Thiele Small Parameters for Pseudo loudspeaker within 10mm grade microspeaker attached to closed-box using known dynamic mass of moving parts. Also, enhanced circuit model for vented-box micro speaker system was used to more accurately simulate electrical impedance curves for real vented-box microspeaker system and compared to test results. Consequently, it showed that micro speaker could be modeled by pseudo loudspeaker TS parameters similar to general loudspeaker. Vented-box microspeaker model with pseudo loudspeaker TS parameters was well suited to describe real microspeaker. Also, it was proposed to estimate volume of rear closed-box of microspeaker without design specifications.

체인-스프라켓 메커니즘을 갖는 에스컬레이터에서 기어박스 백래시로 인한 이상진동에 관한 연구 (A Study on Vibration Characteristics Caused by Backlash of Gearbox in Escalator with Chain-sprocket Drive Mechanism)

  • 권이석;홍성욱;박노길
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.341-347
    • /
    • 2003
  • This paper presents an improved escalator dynamic model so as to reflect the experimental observation on the pseudo-resonance affected by load applied. The experimental evidence reveals that backlash on gearbox as well as sag of driving Chain are most critical factors to the pseudo-resonance in escalators. The dynamic model effectively reflects vibration characteristics measured in real escalators with respect to different conditions of driving chain and the number of passengers. For validation of the dynamic model developed. numerical results from the model are compared with experimental results. The developed model and its simulation results are used rigorously for the design of escalator systems in enhancing the ride comfort.

진동대시험에 근거한 댐의 내진설계시 해석 방법의 비교 (The Comparision of Analysis Methods in dynamic Design of Dam based on Shaking Table tests)

  • 황성춘;오병현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.732-737
    • /
    • 2005
  • This paper performed pseudo static analysis and dynamic analysis for CFRD and evaluated reliability with the results of Shaking Table Test. The Seismic coefficient method, modified seismic coefficient method, Newmark method of Pseudo static analysis and frequency domain response analysis, time domain history analysis of dynamic analysis were used. The analysis results were differ between analysis method, but the trends of acceleration and displacement were good agreement with the results of shaking table test.

  • PDF