• Title/Summary/Keyword: pseudo second order

Search Result 431, Processing Time 0.024 seconds

Removal of Aqueous Cr(VI) using Magnetite Nanoparticles Synthesized from a Low Grade Iron Ore

  • Do, Thi May;Suh, Yong Jae
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.221-230
    • /
    • 2013
  • We demonstrated the efficacy of magnetic nanoparticles (MNPs) produced from a low grade iron ore as an adsorbent for the removal of Cr(VI), a toxic heavy metal anion present in wastewater. The adsorption of Cr(VI) by these MNPs strongly depended on the dosage of MNPs, the initial concentration of the Cr(VI) solutions, and pH. The highest Cr(VI) adsorption efficiency of 22.0 mg/g was observed at pH 2.5. The adsorption data were best fit with the Langmuir isotherm and corresponded to a pseudo-second-order kinetic model. The used adsorbent was regenerated by eluting in highly alkaline solutions. Sodium bicarbonate showed the highest desorption efficiency of 83.1% among various eluents including NaOH, $Na_2HPO_4$, and $Na_2CO_3$. Due to the high adsorption capacity, the simple magnetic separation, and the high desorption efficiency, this nano-adsorbent produced from inexpensive and abundant resources may attract the attention of the industries to apply for removing various metal anionic contaminants from wastewater.

Capacity of Activated Carbon Derived from Agricultural Waste in the Removal of Reactive Dyes from Aqueous Solutions

  • Manoochehri, Mahboobeh;Rattan, V.K.;Khorsand, Ameneh;Panahi, Homayon Ahmad
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.169-175
    • /
    • 2010
  • The study describes the results of batch experiments on the removal of Reactive Yellow 15 (RY15) and Reactive Black 5 (RB5) from synthetic textile wastewater onto Activated Carbon from Walnut shell (ACW). The experimental data were analyzed by the Langmuir, Freundlish, Temkin and Dubinin-Radushkevich (D-R) models of adsorption. The experiments were carried out as function of initial concentrations, pH, temperature (303-333), adsorbent dose and kinetics. The surface area and pore volumes of adsorbent were measured by BET and BJH methods. The findings confirm the surface area (BET) is 248.99 $m^2/g$. The data fitted well with the Temkin and D-R isotherms for RY15 and RB5, respectively. The most favorable adsorption occurred in acidic pH. Pseudo-second order kinetic model were best in agreement with adsorption of RY15 and RB5 on ACW. The results indicate that walnut shell could be an alternative to more costly adsorbent currently being used for dyes removal.

Preparation of Solid-Phase Extractant by Immobilizing Di-(2-ethylhexyl)phosphoric Acid (D2EHPA) and Tri-butyl-phosphate (TBP) in Polysulfone and Removal Characteristics of Cu(II) (Polysulfone에 추출제 Di-(2-ethylhexyl)phosphoric acid (D2EHPA)와 tri-butyl-phosphate(TBP)를 고정화한 고체상 추출제의 제조와 Cu(II)의 제거 특성)

  • Kam, Sang-Kyu;Jeon, Jin-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The solid-phase extractant PS-D2EHPA/TBP was prepared by immobilizing two extractants D2EHPA and TBP in polysulfone (PS). The prepared PS-D2EHPA/TBP was characterized by using fourier transform infrared spectrometer (FTIR) and scanning electron microscopy (SEM). The removal of Cu(II) from aqueous solution was investigated in batch system. The experiment data were obeyed the pseudo-second-order kinetic model. Equilibrium data were well fitted by Langmuir model and the removal capacity of Cu(II) by solid extractant PS-D2EHPA/TBP obtained from Langmuir model was 3.11 mg/g at 288 K. The removal capacity of Cu(II) was increased according to increasing pH from 2 to 6, but the removal capacity was decreased below pH 3 remarkably.

Adsorption Characteristics of Lithium Ion by Zeolite Modified in K+, Na+, Mg2+, Ca2+, and Al3+ Forms (양이온 K+, Na+, Mg2+, Ca2+, Al3+ 형태로 개질한 제올라이트에 의한 리튬 이온의 흡착 특성)

  • Park, Jeong-Min;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1651-1660
    • /
    • 2013
  • The adsorption of lithium ion onto zeolite was investigated depending on contact time, initial concentration, cation forms, pH, and adsorption isotherms by employing batch adsorption experiment. The zeolite was converted into different forms such $K^+$, $Na^+$, $Mg^{2+}$, $Ca^{2+}$, and $Al^{3+}$. The zeolite had the higher adsorption capacity of lithium ion in $K^+$ form followed by $Na^+$, $Ca^{2+}$, $Mg^{2+}$, and $Al^{3+}$ forms, which was in accordance with their elctronegativities. The lithium ion adsorption was explained using the Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms and kinetic models. Adsorption rate of lithium ion by zeolite modified in $K^+$ form was controlled by pseudo-second-order and particle diffusion kinetic models. The maximum adsorption capacity obtained from Langmuir isotherm was 17.0 mg/g for zeolite modified in $K^+$ form. The solution pH influenced significantly the lithium ions adsorption capacity and best results were obtained at pH 5-10.

다양한 흡착제에 의한 지하수 중의 불소제거 특성

  • Park, Hyeon-Ju;Jeong, Jin-Hwa;Song, Myeong-Gi;Na, Chun-Gi
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.423-427
    • /
    • 2008
  • 지하수 중에 함유된 불소이온을 제거하기 위한 흡착제로 상용의 음이온교환수지(PA), 란탄산화물(La) 및 수산화아파타이트(HAp)를 선정하고 각각의 흡착특성을 회분식 실험을 통해 검토하였다. 그 결과를 요약하면 다음과 같다. 1) PA, La 및 HAp의 불소흡착은 Fruendlich isodtherm model 및 Pseudo-second-order kinetics model과 일치하는 거동을 보였다. 2) D-R model로부터 구한 흡착에너지는 9.66$\sim$12.90 kJ/mol로 이온교환메커니즘을 나타내는 흡착에너지 6$\sim$16 kJ/mol의 범위에 속하였다. 3) Van't Hoff 식에 이용하여 구한 ${\Delta}H^{\circ}$${\Delta}G^{\circ}$값은 각각 3.40$\sim$89.28 kJ/mol과 -12.26$\sim$-13.76 kJ/mol의 범위를 보여 모두 흡착과정이 발열반응이며 자발적으로 일어나는 조건임을 알 수 있었다. 4) PA는 pH 6$\sim$8인 중성영역에서 가장 높은 불소 제거율을 보였으며, La과 HAp는 산성영역으로 갈수록 불소 제거율이 증가하는 특성을 나타내었다. 5) 불소에 대한 흡착선택성은 La$\geq$HAp>PA 순으로 높았으며, La의 경우 불소를 제외한 모든 음이온에 대한 흡착능이 없을 정도로 불소에 대한 흡착 특이성을 보였다.

  • PDF

Removal of Cu and Pb Ions from Aqueous Solution by Waste Citrus Peel-based Activated Carbon (폐감귤박으로 합성한 활성탄에 의한 수용액 중의 Cu 및 Pb 이온의 제거)

  • Moon, Myung-Jun;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.401-410
    • /
    • 2018
  • Waste citrus peel-based activated carbon (WCAC) was prepared from waste citrus peels by activation with KOH. The removal of Cu and Pb ions from aqueous solution by the prepared WCAC was investigated in batch experiments. The solution pH significantly influenced Cu and Pb adsorption capacity and the optimum pH was 4 to 6. The adsorption of Cu and Pb ions by WCAC followed pseudo-second-order kinetics and the Langmuir isotherm model. The maximum adsorption capacity calculated by Langmuir isotherm model was 31.91 mg/g for Cu and 92.22 mg/g for Pb. As the temperature was increased from 303 K to 323 K, the ${\Delta}G^{\circ}$ value decreased from -7.01 to -8.57 kJ/mol for Cu ions and from -0.87 to -2.06 kJ/mol for Pb ions. These results indicated that the adsorption of Cu and Pb by WCAC is a spontaneous process.

Infra-Red Reflectography Based Mural Underdrawing Mosaicing Technique (적외선 리플렉토그래피 기반 벽화 밑그림 영상 모자익 기법)

  • Lee, Tae-Seong;Gwon, Yong-Mu;Go, Han-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.191-194
    • /
    • 2003
  • In this paper, we propose a new accurate and robust image mosaic technique of the mural underdrawing taken from the infra-red camera, which is based on multiple image registration and adaptive blending technique. The image mosaicing methods which have been developed so far have the following deficits. It is hard to generate a high resolution image when there are regions that do not have features or intensity gradients, and there is a trade-off in overlapping region site in view of registration and blending. We consider these issues as follows. First, in order to mosaic Images with neither noticeable features nor intensity gradients, we use a Projected supplementary pattern and pseudo color image for features in the image Pieces which are registered. Second, we search the overlapping region size with minimum blending error between two adjacent images and then apply blending technique to minimum error overlapping region. Finally, we could find our proposed method is more effective and efficient for image mosaicing than conventional mosaic techniques and also is more adequate for the application of infra-red mural underdrawing mosaicing. Experimental results show the accuracy and robustness of the algorithm.

  • PDF

Removal of Cd(II) and Cu(II) from Aqueous Solution by Agro Biomass: Equilibrium, Kinetic and Thermodynamic Studies

  • Reddy, Desireddy Harikishore Kumar;Lee, Seung-Mok;Seshaiah, Kalluru
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • The removal of Cd(II) and Cu(II) from aqueous solution by an agricultural solid waste biomass prepared from Moringa oleifera bark (MOB) was investigated. The biosorbent was characterized by Fourier transform infrared spectroscopy and elemental analysis. Furthermore, the effect of initial pH, contact time, biosorbent dosage, initial metal ion concentration and temperature on the biosorption of Cd(II) and Cu(II) were studied using the batch sorption technique. Kinetic studies indicated that the biosorption process of the metal ions followed the pseudo-second order model. The biosorption data was analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. Based on the Langmuir isotherm, the maximum biosorption capacities for Cd(II) and Cu(II) onto MOB were 39.41 and 36.59 mg/g at 323 K, respectively. The thermodynamic parameters, Gibbs free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) changes, were also calculated, and the values indicated that the biosorption process was endothermic, spontaneous and feasible in the temperature range of 303-323 K. It was concluded that MOB powder can be used as an effective, low cost, and environmentally friendly biosorbent for the removal of Cd(II) and Cu(II) ions from aqueous solution.

Adsorption Characteristics of As(V) onto Cationic Surfactant-Modified Activated Carbon

  • Choi, Hyun-Doc;Park, Sung-Woo;Ryu, Byung-Gon;Cho, Jung-Min;Kim, Kyung-Jo;Baek, Ki-Tae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.153-157
    • /
    • 2009
  • Arsenic at abandoned mine sites has adversely affected human health in Korea. In this study, the feasibility of using cationic surfactant-modified activated carbon (MAC) to remove As(V) was evaluated in terms of adsorption kinetics, adsorption isotherms, and column experiments. The adsorption of As(V) onto MAC was satisfactorily simulated by the pseudo-second-order kinetics model and Langmuir isotherm model. In column experiments, the breakthrough point of AC was 28 bed volumes (BV), while that of MAC increased to 300 BV. The modification of AC using cationic surfactant increased the sorption rate and sorption capacity with regard to As(V). As a result, MAC is a promising adsorbent for treating As(V) in aqueous streams.

Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water

  • Rashed, M. Nageeb;Gad, A.A.;AbdEldaiem, A.M.
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.53-71
    • /
    • 2018
  • Waste glass disposal causes environmental problems in the cities. To find a suitable green environmental solution for this problem low cost adsorbent in this study was prepared from waste glass. An effective new green adsorbent was synthesized by hydrothermal treatment of waste glass (WG), followed by acidic activation of its surface by HCl (WGP). The prepared adsorbent was characterized by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), and BET surface measurement. The developed adsorbent was used for the removal of heavy metals (Cd, Cu, Fe, Pb and Zn) from well water. Batch experiments were conducted to test the ability of the prepared adsorbent for the removal of Cd, Cu, Fe, Pb and Zn from well water. The experiments of the heavy metals adsorption by adsorbent (WGP) were performed at different metal ion concentrations, solution pH, adsorbent dosage and contact time. The Langmuir and Freundlich adsorption isotherms and kinetic models were used to verify the adsorption performance. The results indicated high removal efficiencies (99-100%) for all the studied heavy metals at pH 7 at constant contact time of 2 h. The data obtained from adsorption isotherms of metal ions at different time fitted well to linear form of the Langmuir sorption equation, and pseudo-second-order kinetic model. Application of the resulted conditions on well water demonstrated that the modified waste glass adsorbent successfully adsorbed heavy metals (Cd, Cu, Fe, Pb and Zn) from well water.