Browse > Article
http://dx.doi.org/10.11629/jpaar.2013.9.4.221

Removal of Aqueous Cr(VI) using Magnetite Nanoparticles Synthesized from a Low Grade Iron Ore  

Do, Thi May (Nanomaterials Science and Engineering, University of Science and Technology)
Suh, Yong Jae (Nanomaterials Science and Engineering, University of Science and Technology)
Publication Information
Particle and aerosol research / v.9, no.4, 2013 , pp. 221-230 More about this Journal
Abstract
We demonstrated the efficacy of magnetic nanoparticles (MNPs) produced from a low grade iron ore as an adsorbent for the removal of Cr(VI), a toxic heavy metal anion present in wastewater. The adsorption of Cr(VI) by these MNPs strongly depended on the dosage of MNPs, the initial concentration of the Cr(VI) solutions, and pH. The highest Cr(VI) adsorption efficiency of 22.0 mg/g was observed at pH 2.5. The adsorption data were best fit with the Langmuir isotherm and corresponded to a pseudo-second-order kinetic model. The used adsorbent was regenerated by eluting in highly alkaline solutions. Sodium bicarbonate showed the highest desorption efficiency of 83.1% among various eluents including NaOH, $Na_2HPO_4$, and $Na_2CO_3$. Due to the high adsorption capacity, the simple magnetic separation, and the high desorption efficiency, this nano-adsorbent produced from inexpensive and abundant resources may attract the attention of the industries to apply for removing various metal anionic contaminants from wastewater.
Keywords
Adsorption; Magnetic nanoparticles; Iron ore tailing; Chromium; Wastewater;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alvarez, G. S., Foglia, M. L., Camporotondi, D. E., Tuttolomondo, M. V., Desimone, M. F., Diaz, L. E. (2011). A functional material that combines the Cr(VI) reduction activity of Burkholderia sp. with the adsorbent capacity of sol-gel materials, Journal of Materials Chemistry, 21, pp. 6359-6364.   DOI   ScienceOn
2 Amin, M. M., Khodabakhshi, A., Mozafari, M., Bina, B. Kheiri, S. (2010). Removal of Cr(VI) from simulated electroplating wastewater by magnetite nanoparticles, Environmental Engineering and Management Journal, 9, pp. 921-927.
3 Babel, S., Kurniawan, T. A. (2004). Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54, pp. 951-967.   DOI   ScienceOn
4 Badruddoza, A. Z. M., Shawon, Z. B. Z., Rahman, M. T., Hao, K. W., Hidajat, K., Uddin, M. S. (2013). Ionically modified magnetic nanomaterials for arsenic and chromium removal from water, Chemical Engineering Journal, 225, pp. 607-615.   DOI   ScienceOn
5 Barquist, K., Larsen, S. C. (2010). Chromate adsorption on bifunctional, magnetic zeolite composites, Microporous and Mesoporous Materials, 130, pp. 197-202.   DOI   ScienceOn
6 Cao, C. Y., Qu, J., Yan, W. S., Zhu, J. F., Wu, Z. Y., Song, W. G. (2012). Low-cost synthesis of flowerlike $\infty$- $Fe_{2}O_{3}$ nanostructures for heavy metal ion removal: adsorption property and mechanism, Langmuir, 28, pp. 4573-4579.   DOI   ScienceOn
7 Chowdhury, S. R., Yanful, E. K. (2010). Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal, Journal of Environmental Management, 91, pp. 2238-2247.   DOI   ScienceOn
8 Di, Z. C., Ding, J., Peng, X. J., Li, Y. H., Luan, Z. K., Liang, J. (2006). Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles, Chemosphere, 62, pp. 861-865.   DOI   ScienceOn
9 Dong, A., Xie, J., Wang, W., Yu, L., Liu, Q., Yin, Y. (2010). A novel method for amino starch preparation and its adsorption for Cu(II) and Cr(VI), Journal of Hazardous Materials, 181, pp. 448-454.   DOI   ScienceOn
10 Duranoglu, D., Kaya, İ. G. B., Beker, U., Senkal, B. F. (2012). Synthesis and adsorption properties of polymeric and polymer‐based hybrid adsorbent for hexavalent chromium removal, Chemical Engineering Journal, 181-182, pp. 103-112.   DOI   ScienceOn
11 Ho, Y. S., McKay, G. (1999). Pseudo‐second order model for sorption processes, Process Biochemistry, 34, pp. 451-465.   DOI   ScienceOn
12 Ho, Y. S. (2006). Review of second‐order models for adsorption systems, Journal of Hazardous Materials, B136, pp. 681-689.   DOI   ScienceOn
13 Hu, J., Chen, G., Lo, I. M. C. (2005a). Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Research, 39, pp. 4528-4536.   DOI   ScienceOn
14 Kendelewicz, T., Liu, P., Doyle, C. S., Brown, G. E., Nelson, E. J., Chambers, S. A. (1999). X‐ray absorption and photoemission study of the adsorption of aqueous Cr(VI) on single crystal hematite and magnetite surfaces, Surface Science, 424, pp. 219-231   DOI   ScienceOn
15 Hu, J., Lo, I. M. C., Chen, G. (2004). Removal of Cr(VI) by magnetite nanoparticle, Water Science and Technology, 50, pp. 139-146.
16 Hu, J., Lo, I. M. C., Chen, G. (2005b). Fast removal and recovery of Cr(VI) using surface‐modified jacobsite ($MnFe_{2}O_{4}$ ) nanoparticles, Langmuir, 21, pp. 11173-11179.   DOI   ScienceOn
17 Hu, J., Lo, I. M. C., Chen, G. (2007). Performance and mechanism of chromate (VI) adsorption by $\delta$‐FeOOHcoated maghemite ($\gamma-Fe_{2}O_{3}$) nanoparticles, Separation and Purification Technology, 58, pp. 76-82.   DOI   ScienceOn
18 Li, Y., Gao, B., Wu, T., Sun, D., Li, X., Wang, B., Lu, F. (2009). Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide, Water Research, 43, pp. 3067-3075.   DOI   ScienceOn
19 Lu, A. H., Salabas, E. L., Schuth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angewandte Chemie (International ed. in English), 46, pp. 1222-1244.   DOI   ScienceOn
20 Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics, 17, pp. 1247-1248.   DOI
21 Mishra, R. K., Rout, P. C., Sarangi, K., Nathsarma, K. C. (2010). A comparative study on extraction of Fe(III) from chloride leach liquor using TBP, Cyanex 921 and Cyanex 923, Hydrometallurgy, 104, pp. 298-303.   DOI   ScienceOn
22 Mohan, D., Pittman Jr., C. U. (2006). Activated carbons and low cost adsorbents for remediation of tri‐ and hexavalent chromium from water, Journal of Hazardous Materials, B137, pp. 762-811.   DOI   ScienceOn
23 Weng, C. H., Wang, J. H., Huang, C. P. (1997). Adsorption of Cr(VI) onto $ TiO_{2}$from dilute aqueous solutions, Water Science Technology, 35, pp. 55‐62.
24 Peterson, M. L., Brown, G. E., Parks, G. A. (1996). Direct XAFS evidence for heterogeneous redox reaction at the aqueous chromium/magnetite interface, Colloids and Surfaces A‐Physicochemical and Engineering Aspects, 107, pp. 77-88.   DOI   ScienceOn
25 Reeder, R. J., Schoonen, M. A. A., Lanzirotti, A. (2006). Metal speciation and its role in bioaccessibility and bioavailability, Reviews in Mineralogy & Geochemistry, 64, pp. 59-113.   DOI   ScienceOn
26 Sharma, Y. C., Srivastava, V., Singh, V. K., Kaul, S. N., Weng, C. H. (2009). Nano‐adsorbents for the removal of metallic pollutants from water and wastewater, Environmental Technology, 30, pp. 583-609.   DOI   ScienceOn
27 Zhang, Y., Li, Y., Li, J., Sheng, G., Zhang, Y., Zheng, X. (2012). Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero‐valent iron, Chemical Engineering Journal, 185-186, pp. 243-249   DOI   ScienceOn