Journal of the Korea Society of Computer and Information
/
v.18
no.4
/
pp.19-26
/
2013
Pseudo sample neural network (PSNN) is a variant of traditional neural network using pseudo samples to mitigate the local-optima-convergence problem when the size of training samples is small. PSNN can take advantage of the smoothed solution space through the use of pseudo samples. PSNN has a focus on the quantity problem in training, whereas, methods stressing the quality of training samples is presented in this paper to improve further the performance of PSNN. It is evident that typical samples and highly correlated features help in training. In this paper, therefore, kernel density estimation is used to select typical samples and correlation factor is introduced to select features, which can improve the performance of PSNN. Debris flow data set is used to demonstrate the usefulness of the proposed methods.
Journal of the Korea Society of Computer and Information
/
v.17
no.11
/
pp.11-18
/
2012
Debris flow deposition model is a model to predict affected areas by debris flow and random walk model (RWM) was used to build the model. Although the model was proved to be effective in the prediction of affected areas, the model has several free parameters decided experimentally. There are several well-known methods to estimate parameters, however, they cannot be applied directly to the debris flow problem due to the small size of training data. In this paper, a modified neural network, called pseudo sample neural network (PSNN), was proposed to overcome the sample size problem. In the training phase, PSNN uses pseudo samples, which are generated using the existing samples. The pseudo samples smooth the solution space and reduce the probability of falling into a local optimum. As a result, PSNN can estimate parameter more robustly than traditional neural networks do. All of these can be proved through the experiments using artificial and real data sets.
Communications for Statistical Applications and Methods
/
v.10
no.2
/
pp.479-496
/
2003
We investigate logit confidence intervals for the odds ratio based on the delta method. These intervals are constructed using pseudo-Bayes estimators. The Gart method and Agresti method smooth the observed counts toward the model of equiprobability and independence, respectively. We obtain better coverage probability by smoothing the observed counts toward the pseudo-Bayes estimators in 2$\times$2 table. We also improve legit confidence intervals in 2$\times$2$\times$K tables by generalizing these ideas. Utilizing pseudo-Bayes estimators, we obtain better coverage probability by smoothing the observed counts toward the conditional independence model, no three-factor interaction model and saturated model in 2$\times$2$\times$K tables.
Kim, Hyun-Ku;Lee, Gee-Dong;Kwon, Joong-Ho;Kim, Kong-Hwan
Food Science and Biotechnology
/
v.14
no.6
/
pp.836-840
/
2005
Extraction characteristics of Bonus species of Brassica oleracea var. capita and functional properties of corresponding extract were monitored by response surface methodology (RSM). Maximum extraction yield of 44.07% was obtained at ratio of solvent to sample of 27.94 mL/g, ethanol concentration of 24.35%, and extraction temperature of $55.21^{\circ}C$. At ratio of solvent to sample, ethanol concentration, and extraction temperature of 21.11 mL/g, 58.53%, and $68.83^{\circ}C$, respectively, maximum electron-donating ability was 48.44%. Maximum inhibitory effect on tyrosinase was 68.94% at ratio of solvent to sample, ethanol concentration, and extraction temperature of 24.08 mL/g, 10.49%, and $78.71^{\circ}C$, respectively. Superoxide dismutase (SOD) showed maximum pseudo-activity of 24.78% at ratio of solvent to sample of 22.66 mL/g, ethanol concentration of 45.69%, and extraction temperature of $93.81^{\circ}C$. Based on superimposition of four-dimensional RSM with respect to extraction yield, electron-donating ability, and pseudo-activity of SOD, optimum ranges of extraction conditions were ratio of solvent to sample of 20-30 mL/g, ethanol concentration of 35-65%, and extraction temperature of $50-80^{\circ}C$.
This study was divised to observe an Inhibitory effect toward a lipolytic action of toxohormone-L from large root and small root Nepal pseudo ginseng (NPG ; Nepal products) components by water extract and ethanol precipitate in vitro. Toxohormone-L is known to be a lipolytic factor that was partially purified from the ascites fluid of Sarcoma 180-bearing mice and of patients with hepatoma. The inhibitory effect that inhibited the lipolytic action of toxohormone-L by ethanol Precipitate component of large root NPG (mean 55.5%) was higher (mean 1.37 times) than that of water extract component in final reaction concentration of 500 and 1, 000ug/ml, on the other side inhibitory effect of water extract component in small root NPG (mean 55.5%) was higer (mean 1.14 times) than that of ethanol precipitate component. In a way inhibitory effect of precipitate component In large root NPG(47.6%), when final reaction concentration of sample were 1, 000ug/ml, was about 40% lower than that of Korean red ginseng.
In the paper, the effects of sidecar on index arbitrage trading and non-index arbitrage trading in the Korean stock market are examined. The analyses of return, volatility, and liquidity dynamics illustrate that there are no distinct differences for index arbitrage group and non-index arbitrage group surrounding the sidecar events. For further analysis, we construct pseudo-sidecar sample and analyse the effects of the actual sidecar and pseudo-sidecar on arbitrage sample and non-index arbitrage sample. The result of analysis using pseudo-sidecar shows that the differences between index arbitrage group and non-index arbitrage group are larger in pseudo-sidecar sample than in actual sidecar sample. This means that former results can be explained by temporary order clustering in one side before and after the event. Sidecar has little effect on non-index arbitrage group, however, it has relatively large effect on arbitrage group. These results imply that it needs to redesign the sidecar system of the Korean stock market which applies for all program trading including arbitrage and non-index arbitrage trading.
Heo, Gyeongyong;Woo, Young Woon;Kim, Ji-Hong;Lee, Imgeun;Kim, Nam-Gyu
Proceedings of the Korean Society of Computer Information Conference
/
2013.01a
/
pp.197-199
/
2013
신경망의 학습은 학습 샘플의 품질뿐만이 아니라 입력으로 사용되는 특징에도 영향을 받으므로 신경망의 출력을 결정하는데 있어 연관성이 높은 특징을 입력으로 사용함으로써 학습된 신경망의 전체적인 성능을 높일 수 있다. 이 논문에서는 신경망의 입력으로 사용되는 특징과 출력의 연관성 파악하고 연관성이 낮은 특징을 학습 과정에서 배제함으로써 신경망의 전체적인 성능을 높일 수 있는 방법을 제시하였다. 토석류 데이터를 위한 의사 샘플 신경망에 제안한 방법을 적용한 경우 연관성이 낮은 특징 하나를 제외함으로써 약 6%의 오류 감소 효과를 얻을 수 있었다.
This study was divised to observe an inhibitory toward a lipolytic action of toxohormone-L from large root and small root Nepal pseudo ginseng(NPG ; Nepal products) components by water extract and ethanol precipitate in vitro. Toxohormone-L Is known to be a lipolytic factor that was partially purified from the ascites fluid of sarcoma 180-hearing mice and of patients with hepatoma. The inhibitory effect that inhibited the lipolytic action of toxohormone-L by ethanol precipitate component of large root NPG(mean 46.8%) was higher (mean 1.8 times) than that of water extract component in final reaction concentration ,5001g1m1, on the other side inhibitory effect of water extract component in small root NPG(mean 43.9%) was higher(mean 1. 2 times) than that of ethano1 precipitate component, respectively. In a way inhibitory effect of ethanol precipitate component in large root NPG(47.6%), when final reaction concentration of sample were 1,000 U g/ml, was about 4095 lower than that of Korean red ginseng, respectively.
Journal of the Korean Data and Information Science Society
/
v.28
no.6
/
pp.1557-1564
/
2017
We take genomic sequences of high-dimensional low sample size (HDLSS) without ordering of response categories into account. When constructing an appropriate test statistics in this model, the classical multivariate analysis of variance (MANOVA) approach might not be useful owing to very large number of parameters and very small sample size. For these reasons, we present a pseudo marginal model based upon the Gini-Simpson index estimated via Bayesian approach. In view of small sample size, we consider the permutation distribution by every possible n! (equally likely) permutation of the joined sample observations across G groups of (sizes $n_1,{\ldots}n_G$). We simulate data and apply false discovery rate (FDR) and positive false discovery rate (pFDR) with associated proposed test statistics to the data. And we also analyze real SARS data and compute FDR and pFDR. FDR and pFDR procedure along with the associated test statistics for each gene control the FDR and pFDR respectively at any level ${\alpha}$ for the set of p-values by using the exact conditional permutation theory.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.40
no.1
/
pp.15-23
/
2003
This paper proposes a fast direction of arrival (DOA) estimation algorithm that can rapidly estimate incidence angles of incoming signals using a pseudo covariance matrix. The conventional subspace DOA estimation methods such as MUSIC (multiple signal classification) algorithms need many sample signals to acquire covariance matrix of input signals. Thus, it is difficult to estimate the DOAs of signals because they cannot perform DOA estimation during receiving sample signals. Also if the D0As of signals are changing rapidly, conventional algorithms cannot estimate incidence angles of signals exactly. The proposed algorithm obtains bearing response and directional spectrum after acquiring pseudo covariance matrix of each snapshot. The incidence angles can be exactly estimated by using the bearing response and directional spectrum. The proposed DOA estimation algorithm uses only concurrent snapshot so as to obtain covariance matrix. Compared to conventional DOA estimation methods. The proposed algorithm has an advantage that can estimate DOA of signal rapidly.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.