• Title/Summary/Keyword: pseudo acceleration response

Search Result 41, Processing Time 0.021 seconds

A Study On Arbitrary Artificial Earthquake Acceleration Generation -Based On Design Response Spectrum of Arbitrary Damping Value- (임의의 인공지진 가속도 발생에 관한 연구 -설계응답 스펙트럼에 기초하여 -)

  • 우운택;김영문;노재선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.5-10
    • /
    • 1989
  • In this study, the basic concept of design response spectrum is briefly revi-ewed. To generate the artificial earthquake acceleration, the method of superpo-sition of cosine waves is used. Theoretical developments using F.F.T. and spect-ral density function are compared. The amplitude was derived by use of the peak factor and the phase angle is d-erived by use of Monte Carlo simulation. To smoothen the match, the calculated pseudo velocity respon-se spectrum is compared with input pseudo velocity response spectrum at a set of control frequencies. With the modified spectral density function, a new acceleration and pseudo velocity response spectrum are generat-ed.

  • PDF

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.

Study on seismic performance of steel frame with archaized-style under pseudo-dynamic loading

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.39-48
    • /
    • 2019
  • This paper presents an experimental study on a 1/2 scale steel frame with archaized-style under the pseudo-dynamic loading. Four seismic waves, including El Centro wave, Taft wave, Lanzhou wave and Wenchuan wave, were input during the test. The hysteresis characteristic, energy dissipation acceleration response, displacement response, strength, stiffness and strain were analyzed. Based on the experiment, the elastoplastic dynamic time-history analysis was carried out with the software ABAQUS. The stress distribution and failure mode were obtained. The results indicate that the steel frame with archaized-style was in elastic stage when the peak acceleration of input wave was no more than 400 gal. Under Wenchuan wave with peak acceleration of 620 gal, the steel frame enters into the elastoplastic stage, the maximum inter-story drift was 1/203 and the bearing capacity still tended to increase. During the loading process, Dou-Gong yielded first and played the role of the first seismic fortification line, and then beam ends and column bottom ends yielded in turn. The steel frame with archaized-style has good seismic performance and meets the seismic design requirement of Chinese code.

Effect of Demand Spectrums on the Accuracy of Capacity Spectrum Method (요구곡선 산정방법에 따른 능력스펙트럼법의 유효성 평가 및 비교)

  • Kim, Hong-Jin;Min, Kyung-Won;Park, Min-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.33-42
    • /
    • 2004
  • While transforming the inelastic system into the equivalent elastic one gives an advantage of simpler analysis, the actual inelastic behavior of the system is hardly modeled in the capacity spectrum method (CSM). Therefore, the accuracy of CSM depends on the precise estimation of equivalent period and damping ratio as well as the modification of the elastic response spectrum and the corresponding demand spectrum. In this paper, the effect of demand spectrums on the accuracy of CSM is evaluated. First, the response reduction factors provided in ATC-40 and Euro Code are evaluated. Numerical analysis results indicated that the acceleration responses obtained using the factor of Euro Code are closer to the actual response than those obtained using the factors of ATC-40. Next, the accuracy of CSM is evaluated constructing the demand spectrum using the absolute acceleration responses and pseudo acceleration responses. The results obtained using the absolute acceleration responses were found to be generally larger than those obtained using the pseudo ones. Since CSM often underestimates the response, the use of absolute acceleration response gives the response relatively closer to the exact ones. However, the difference becomes negligible as the hardening ratio and the yield strength ratio become larger.

Damage Count Method Using Acceleration Response for Vibration Test Over Multi-spectral Loading Pattern (복합 스펙트럼 패턴의 진동 시험을 위한 가속도 응답 데이터 기반의 피로 손상도 계산 방법)

  • Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.739-746
    • /
    • 2015
  • Several damage counting methods can be applied for the fatigue issues of a ground vehicle system using strain data and acceleration data is partially used for a high cyclic loading case. For a vibration test, acceleration data is, however, more useful than strain one owing to the good nature of signal-to-random ratio at acceleration response. The test severity can be judged by the fatigue damage and the pseudo-damage from the acceleration response stated in ISO-16750-3 is one of sound solutions for the vibration test. The comparison of fatigue damages, derived from both acceleration and strain, are analyzed in this study to determine the best choice of fatigue damage over multi-spectral input pattern. Uniaxial excitation test was conducted for a notched simple specimen and response data, both acceleration and strain, are used for the comparison of fatigue damages.

Estimation of amplification of slope via 1-D site response analysis (1차원 지반응답해석을 통한 사면의 증폭특성 규명)

  • Yun, Se-Ung;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.620-625
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops the modified one-dimensional seismic site response analysis. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses are performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure are compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match.

  • PDF

A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.759-773
    • /
    • 2012
  • The objective of this paper is to present an energy-based method for calculating target displacement of RC structures. The method, which uses the Newmark-Hall pseudo-velocity spectrum, is called the "Pseudo-velocity Spectrum (PSVS) Method". The method is based on the energy balance concept that uses the equality of energy demand and energy capacity of the structure. First, nonlinear static analyses are performed for five, eight and ten-story RC frame structures and pushover curves are obtained. Then the pushover curves are converted to energy capacity diagrams. Seven strong ground motions that were recorded at different soil sites in Turkey are used to obtain the pseudo-acceleration and the pseudo-velocity response spectra. Later, the response spectra are idealised with the Newmark-Hall approximation. Afterwards, energy demands for the RC structures are calculated using the idealised pseudo-velocity spectrum. The displacements, obtained from the energy capacity diagrams that fit to the energy demand values of the RC structures, are accepted as the energy-based performance point of the structures. Consequently, the target displacement values determined from the PSVS Method are checked using the displacement-based successive approach in the Turkish Seismic Design Code. The results show that the target displacements of RC frame structures obtained from the PSVS Method are very close to the values calculated by the approach given in the Turkish Seismic Design Code.

Experiment study of structural random loading identification by the inverse pseudo excitation method

  • Guo, Xing-Lin;Li, Dong-Sheng
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.791-806
    • /
    • 2004
  • The inverse pseudo excitation method is used in the identification of random loadings. For structures subjected to stationary random excitations, the power spectral density matrices of such loadings are identified experimentally. The identification is based on the measured acceleration responses and the structural frequency response functions. Numerical simulation is used in the optimal selection of sensor locations. The proposed method has been successfully applied to the loading identification experiments of three structural models, two uniform steel cantilever beams and a four-story plastic glass frame, subjected to uncorrelated or partially correlated random excitations. The identified loadings agree quite well with actual excitations. It is proved that the proposed method is quite accurate and efficient in addition to its ability to alleviate the ill conditioning of the structural frequency response functions.

The Comparision of Analysis Methods in dynamic Design of Dam based on Shaking Table tests (진동대시험에 근거한 댐의 내진설계시 해석 방법의 비교)

  • Hwang, Seong-Choon;Oh, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.732-737
    • /
    • 2005
  • This paper performed pseudo static analysis and dynamic analysis for CFRD and evaluated reliability with the results of Shaking Table Test. The Seismic coefficient method, modified seismic coefficient method, Newmark method of Pseudo static analysis and frequency domain response analysis, time domain history analysis of dynamic analysis were used. The analysis results were differ between analysis method, but the trends of acceleration and displacement were good agreement with the results of shaking table test.

  • PDF

Development of Attenuation Equations of ground Motions in the Southern Part of the Korean Peninsula (한반도 남부 지역의 지진동 감쇄식 개발)

  • 노명현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.21-28
    • /
    • 1999
  • The objective of the study is to develop attenuation equations of the ground motions in the southern part of the Korean peninsula. The earthquake source characteristics and the medium properties were estimated from available instrumental earthquake records and used as input parameters. The peak ground accelerations(PGA) and pseudo-velocity response spectra(PSV) were simulated by the random vibration theory. The attenuation equations for the PGA and PSV were constructed in terms of local magnitudes and hypocentral distances.

  • PDF