• Title/Summary/Keyword: protopectinase

Search Result 19, Processing Time 0.028 seconds

The Effects of Soybean Protopectinase on Melanin Biosynthesis (효소(Protopectinase) 처리한 대두가 세포내 멜라닌 생성에 미치는 영향)

  • Yoo, Jin-Kyoun;Lee, Jin-Hee;Cho, Hyung-Yong;Kim, Jung-Gook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.355-362
    • /
    • 2013
  • This study was performed to assess the antioxidant activities and whitening effects of protopectinase enzymes and mechanical maceration from soybeans on melanin synthesis. The whitening effects of enzyme treatment and mechanical maceration were examined by an in vitro mushroom tyrosinase assay and by assessing markers in B16BL6 melanoma cells. We assessed inhibitory effects on the expression of melanogenic enzymes, including tyrosinase, tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) in B16BL6 cells. Inhibitory effects on free radical generation were determined by measuring DPPH and hydroxyl radical scavenging activities. In DPPH radical scavenging activity, enzyme treatment and mechanical maceration had a potent anti-oxidant activity in a dose-dependent manner and significantly inhibited tyrosinase activity in vitro and in B16BL6 melanoma cells. There was also an inhibition in the expression of tyrosinase, TRP-1, and TRP-2 in B16BL6 melanoma cells. Our results show that soybean protopectinase treatment inhibits melanogenesis, with the underlying mechanism possibly due to the inhibition of tyrosinase activity and tyrosinase, TRP-1, and TRP-2 expression. We suggest that soybean protopectinase should be contained as natural active ingredients for antioxidant and whitening cosmetics.

Effect of Medium Composition on Protopectinase Production from Bacillus subtilis EK11 (Bacillus subtilis EK11로부터 Protopectinase 생산을 위한 배지성분의 영향)

  • 이대희;박은경;문철환;하정욱;이승철;황용일
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.378-384
    • /
    • 1999
  • Protopectinase (PPases) are heterologous group of enzymes that degrade pectin from the insoluble protopection which is constituent of the middle lamella and primary cell wall of higher plants by restricted depolymerization. From the previous report[6], enzymatically separated plant cells, which are produced from plant tissues by PPases treatment, showed well-conserved cellular components with their rigid cell wall and this characteristic is applicable to preparation of novel food material. The purpose of this study is to investigate the effect of medium composition of PPase production from Bacillus subtilis EK11 which was selected as a PPase producer. Various carbon sources and concentrations on PPase production were studied and corn starch at 0.7% was the most effective for production of PPase. Among the nitrogen sources, yeast extract was the most effective for PPase production and the effect of (NH4)2SO4 was notable as inotganic nitrogen source. Inorganic compounds such as KH2PO4, K2HPO4, Na3-citrate.2H2O and MgSO4 were optimized for PPase production. PPase activity was inhibited by the adition of Ba2+ or Zn2+. The optimal medium for PPase production was devised: 0.7% corn starch, 0.3% yeast extract, 1.4% KH2PO4, 0.6% K2HPO4, 0.1% Na3-citrate.2H2O and 0.02% MgSO4. PPase production by using the optimum medium was carried out with shaking cultivation at 37$^{\circ}C$. The maximum PPase activity of 256unit/ml could be obtained after the cultivation for 48hrs. The activity was increased about 2.2timesthan the activity, 112 unit/ml, in basal medium.

  • PDF

Processing Properties of Kiwifruit Treated with Protopectinase (Protopectinase를 이용한 참다래의 가공 특성)

  • 이대희;이승철;황용일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.3
    • /
    • pp.401-406
    • /
    • 2000
  • In development of the processed food, it is important not only to make the food delicious but to enhance its storage span and thermal stability without change of the food quality in color, which greatly affects the tastes of customers. Protopectinase (PPase) from Bacillus subtilis EK11 hydrolyses or dissolves protopectin in the middle lamella of plant tissues with the resultant separation of plant cells from each other, called enzymatic maceration. With the PPase, Kiwifruit was enzymatically macerated to separate cells to primary cell wall without damage. Yields of kiwifruit treated with PPase and mechanical maceration were 82% and 60%, respectively. Total and reducing sugars, crude protein and fat in the enzymatic maceration were well preserved as in the mechanical maceration. Importantly, over 95% of vitamin C, which is the most unstable component in application of the mechanical maceration, remained with intact form for one day after the enzymatic treatment. When the suspensions of kiwifruit macerated with both treatments had been stored at $4^{\circ}C for 6 days, the suspension of kiwifruit mechanically macerated was decolorized. whereas decolorization was not found in the enzymatically macerated kiwifruit. Moreover, the mechanically macerated kiwifruit was greatly deteriorated after heat treatment at $100^{\circ}C for 60 min ; the cell suspension of the exzymatically separated kiwifruit appeared to be stable, indicating the thermal stability. Thus, the PPase treatment could be a better choice for preparation of the highly valuable and functional processed food of kiwifruit as well as for prolonging the preservation period of the processed kiwifruit.

  • PDF

Characteristics of Sweet Persimmon Treated with Protopectinase from Bacillus subtilis EK11 (Bacillus subtilis EK11 유래 Protopectinase를 처리한 단감의 특성)

  • 이대희;이승철;황용일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • In development of the processed food, it is important not only to make the food delicious but to enhance its storage span and thermal stability without change in color, which greatly affects the tastes. Protopectinase (PPase) from Bacillus subtilis EK11 hydrolyses or dissolves protopectin in the middle lamella of plant tissues with the resultant separation of plant cells from each other, called enzymatic maceration. With the PPase, persimmon was enzymatically macerated to separate cells to primary cell wall without damage. Recovery rates of persimmon treated with PPase and mechanical maceration were 95% and 85%, respectively. Total and reducing sugars, crude protein and fat in the enzymatic maceration were well preserved as in the mechanical maceration. Importantly, over 50% of vitamin C, which is the most unstable component during the mechanical maceration, remained with an intact form for one day after the enzymatic treatment. When the suspensions of persimmon macerated with both treatments were stored at 4$^{\circ}C$ for 9 days, the mechanically macerated persimmon suspension was decolorized, whereas decolorization, was not found in the enzymatically macerated persimmon suspension. Moreover the mechanically macerated persimmon was greatly deteriorated after heat treatment at 10$0^{\circ}C$ for 60 min, whereas cells of the enzymatically separated persimmon suspension appeared to be stable, indicating increased thermal stability Thus, the PPase treatment of persimmon could be a better choice for preparation of highly valuable and functional processed food as well as for increase in preservation period.

Change of Antioxidant Activities in Carrots (Daucus carota var. sativa) with Enzyme Treatment (효소처리 가공이 당근(Daucus carota var. sativa)의 항산화 활성 변화에 미치는 영향)

  • Yoo, Jin-Kyoun;Lee, Jin-Hee;Cho, Hyung-Yong;Kim, Jung-Gook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.262-267
    • /
    • 2013
  • The purpose of this research is to minimize the loss of nutrients in carrots (Daucus carota var. sativa). A protopectinase was used to enzymatically macerated and separate cells without damage. The enzyme modification group's collection rate was 81% (residue rate 19%), while the grinding process group's collection rate was 56% (residue rate 44%)-an over 20% of collection rate difference. Thus we predicted a big difference in transference number after the process and wastage. In comparing ingredient changes in the enzyme modification group versus the grinding process group, the content of ${\beta}$-carotene (the carrot's main ingredient) showed a change in protection factor (PF) ($2.2{\pm}0.2$ PF, $1.4{\pm}0.4$ PF, respectively), total polyphenol content ($89{\pm}3.42{\mu}g/g$, $64{\pm}4.16{\mu}g/g$, respectively), and total flavonoid content ($68{\pm}2.73{\mu}g/g$, $41{\pm}3.26{\mu}g/g$, respectively). Thus we confirmed that nutrient destruction, due to cell membrane preservation, occurred less often in the enzyme modification process than the mechanical grinding process group. We also measured DPPH radical scavenging activity, hydroxyl radical scavenging activity, and nitrite scavenging activity. DPPH radical scavenging activity was $87{\pm}0.29%$ and $74{\pm}1.56%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Hydroxyl radical scavenging activity was $44{\pm}0.49%$ and $32{\pm}0.48%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Nitrite scavenging activity was $59{\pm}0.53%$ and $46{\pm}0.62%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Our results show that cell membrane preservation, via the protopectinase enzyme process, decreases the loss of nutrients and still preserves inherent antioxidants.

Quality Characteristics of Garlic Suspensions Using Protopectin Hydrolytic Enzymes (Protopectinase를 이용하여 제조한 마늘 단세포화물의 품질특성)

  • Baek Ku-Hyoun;Kim Sung-Soo;Tak Sang-Bum;Kang Byung-Sun;Kim Dong-Ho;Lee Young-Chun
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.351-356
    • /
    • 2006
  • This study was carried out to investigate the change of functional component and volatile flavor components from garlic for which both were treated with protopectinase (PPase) and mechanical maceration during storage period. Alliin content of gallic suspensions macerated mechanically were 11.0 mg/g at 0 day and 6.6 mg/g at 24 day. Whereas alliin content of garlic treated with PPase were 8.5 m/g at 0 day and 7.0 mg/g at 24 day. Importantly, over 40% of alliin which is the most unstable component during the mechanical maceration remained with an intact form for 24 day after the enzymatic treatment. The flavor component from gallic suspensions were extracted by solid-phase microextraction (SPME) and were analyzed and identified by gas chromatography (GC) and chromatography/mass spectrometry (GC/MS). The number and concentrations of flavor components of gallic macerated mechanically were increased during storage period, and total 18 kinds of flavor compounds were identified. Thus, the PPase treatment of garlic could be a better choice for preparation of the highly valuable and functional processed food as well as for prolonging the preservation period.

Production of Portopectinase from Bacillus subtilis EK11 (Bacillus subtilis EK11로부터 Protopectinase 생산)

  • 문철환;최종수;이승철;황용일
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.176-180
    • /
    • 2001
  • In plant tissues intercellular cementing portion called as middle lamella consists of high proportion of protopectin that is water insoluble form of pectin on their backbone Protopectinase (PPase) a heterogeneous group of enzymes that hydrolyze or dissolve the insoluble protopectin in plant tissues by restricted depolymerization liberates water solu- ble pectin with the resultant separation of plant tissues that have been protected against environmental shock by rigid cel wall . Bacillus subtilis EKll was most effective for PPase Production For increasing of PPase productivity effects of glucose concentrations, pHs and aeration rates were studied in batch culture The most proper concentra- tion of glucose pH and air condition for PPase Production were 1% 8.0 and lvvm respectively In these condi- tion PPase productivity was $84,364 UL^{-1}$ $h^{-1}$ and increased about 15.6 times than flask fermentation.

  • PDF

Characteriatics of Single Cell Suspension of Garlic, Red Pepper and Cucumber Prepared by Protopectin Hydrolytic Enzymes (펙틴분해효소를 이용한 마늘, 고추와 오이의 단세포화물의 제조)

  • Baek, Ku-Hyoun;Kim, Sung-Soo;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.369-377
    • /
    • 2006
  • Protopectinase (PPase) from Bacillus subtilis was used to investigate enzymatic maceration of vegetable tissues. Optimum concentration and pH of PPase were 0.75, 0.75, and 0.5%, and 5.0, 8.0, 7.0 for red pepper, garlic, and cucumber, respectively. Optimum shaking-rate, reaction time, and temperature of PPase were 250 rpm, 150 min, and $37^{\circ}C$, respectively. Yields of mechanically macerated red pepper, garlic, and cucumber were 45.8, 47.5, and 82.1%, whereas those treated with PPase were 81.8, 84, and 98%. Over 40% Vitamin C, the most unstable component during mechanical maceration, remained intact for 12 days after enzymatic treatment. Color differences $({\Delta}E)$ of mechanically macerated red pepper, garlic, and cucumber were 1.16, 2.86, and 3.27, whereas those of PPase-treated ones were 2.87, 7.68, and 5.22 after heat treatment at $100^{\circ}C$ for 20 min. Capsaicin content of mechanically macerated red pepper was 0.4 mg/100 g, whereas that treated with PPase was 1.32 mg/100 g. Viscosity of PPase-treated vegetable decreased slowly with increasing storage period, whereas that of mechanically macerated vegetable sharply decreased. These results indicate PPase treatment of vegetable could be better choice for preparation of high-values and functionally processed food and for extending preservation period.

Effects of Single Cell Products of Apple on Stimulating Various Functions of Murine Peritoneal Macrophages

  • Choi, In-Wook;Cho, Ga-Young;Kim, Seung-Hyun;Park, Yong-Gon
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.347-350
    • /
    • 2006
  • The objective of this study was to investigate the possible effects of oral administration of single cell products (SCP) of apple on activating peritoneal macrophages. Apples were processed either for cold-pressed juice or SCP, which were produced by incubating sliced apples with a protopectinase, Sumyzyme MC. Both cold-pressed juice and SCP of apple were administered to C57BL/6 mice for 10 days to compare their efficacy, along with the control group, in stimulating peritoneal macrophages. The viability of macrophages was significantly increased by up to 161% of that of the control following the administration of apple SCP, whereas the viability of macrophages was increased to a lesser extent of up to 143% in the apple juice (AJ) administered group. Administration of apple SCP also induced a significantly higher production of $H_2O_2$ from macrophages (317% of the control) than that of cold-pressed AJ (210%). Although nitric oxide (NO) production was not increased by the administration of either AJ or SCP, the latter slightly but significantly increased tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$) production from macrophages from 560.4 to 579.8 pg/mL. The results of this study suggest that administering SCP is more efficient than administering AJ to stimulate functions of peritoneal macrophages.