• Title/Summary/Keyword: proton exchange membrane fuel Cell

Search Result 430, Processing Time 0.023 seconds

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells (고분자연료전지의 화학적/기계적 내구성 평가 시간 단축)

  • Sohyeong Oh;Donggeun Yoo;Kim Myeonghwan;Park Jiyong;Choi Yeongjin;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.517-522
    • /
    • 2023
  • A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.

Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features (초정밀 대면적 미세 형상 가공기의 구조 특성 해석)

  • Kim, Seok-ll;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1173-1179
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.

Study on Corrosion Problems in PEMFC Cooling System (PEMFC 냉각 시스템의 물부식 방지에 관한 연구)

  • Park, Kwang-Jin;Jeong, Jae-Hwa;Kim, Jung-Hyun;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1188-1193
    • /
    • 2007
  • This study focuses on the corrosion problems of STS316(stainless steel 316) tube for the cooling system of PEMFC (Proton Exchange Membrane Fuel Cell) operation. Deionized water which is highly corrosive is used especially for cooling agent of PEMFC to eliminate electrical conductivity, The tensile stress analysis was performed to check the change of mechanical strength of cooling line and pH of the water was monitored for the observation of extent of corrosion at simulated PEMFC operating condition. When STS316 tube was exposed to deionized water for 500 hours, substantial cracks were found on the surface and the pH of water was decreased from 6.8 to 5.8. For prevention of corrosion problems, the STS316 was coated by three kinds of fluororesin such as PTFE, FEP and ETFE. Among the coating materials, PTFE was the most protective in corrosive environment and was maintained the mechanical strength. To lower the cost, the same experimental analyses were carried out for iron tubes and the result will be discussed in detail.

A Study on the Hydrogen Supply for Variation in Output from a Metal Hydride Canister (금속수소화물 금속용기로부터 출력변동에 필요한 수소공급에 관한 연구)

  • Jung, Young-Guan;Kim, Se-Woong;Kim, Kyung-Hoon;Choi, Seong-Dae;Jang, Tae-Ik;Hwang, Chul-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.216-223
    • /
    • 2009
  • The relation between temperature and hydrogen desorption on variation in output was investigated for the metal hydride canister. For this study, an AB$_5$ type alloy were chosen as a hydrogen storage material in the metal hydride canister. And application to the single proton exchange membrane fuel cell was evaluated. As the results, the hydrogen desorption was linearly increased as the temperature was risen. In addition, metal hydride canister heating was able to correspond the variation of load as power request in the PEMFC system.

A Study on Thermal and Mechanical Behaviors of Micro Reformer (마이크로 리포머의 열 및 역학적 거동 분석)

  • Hwang W.H.;Jang J.H.;Kil J.H.;Kim S.J.;Lee R.W.;Kim S.H.;Chung K.H.;Oh Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.235-239
    • /
    • 2005
  • We analyzed the thermal and mechanical behaviors of micro reformer for the purpose of design verifications and modification of micro channels. The reformer designed for hydrogen generation from methanol is essential to PEM(Proton Exchange Membrane) type fuel cell. For the mobile applications, the size and the simplicity would be the most critical issues. We utilized silicon process for micro reformer to obtain the thickness thinner than 2 mm thick. We have used commercial simulation software, IDEAS, to analyze the thermal and mechanical characteristics of micro reformer structure. The heat generation rates of heaters, heat transfer rates, and fluid temperatures are derived from thermal equilibrium relation and these values were used for thermal boundary conditions. We also analyzed the thermal stresses, thermal deformations to examine the possibility of failure.

  • PDF

Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate (고분자 전해질 연료전지 금속분리판 316L 스테인리스강의 부식거동 및 기체확산층(GDL)과의 계면접촉저항 측정)

  • Oh, In-Hwan;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.129-136
    • /
    • 2010
  • The corrosion behaviors of 316L stainless steel were investigated in simulated anodic and cathodic environments for proton exchange membrane fuel cell (PEMFC) by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the stainless steel and gas diffusion layer(GDL) was also measured. The possibility of 316L was evaluated as a substitute material for the graphite bipolar plate of PEMFC. The value of ICR decreased with an increase in compaction stress(20 N/$cm^2$~220 N/$cm^2$) showing the higher values than the required value in PEMFC condition. Although 316L was spontaneously passivated in simulated cathodic environment, its passive state was unstable in simulated anodic environment. Potentiostatic and electrochemical impedance spectroscopy (EIS) measurement results showed that the corrosion resistance in cathodic condition was higher and more stable than that in anodic condition. Field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma(ICP) were used to analyze the surface morphology and the metal ion concentration in electrolytes.

Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes (고분자전해질 막을 위한 나프탈렌 단위를 포함하는 디 및 트리 블록공중합체의 합성 및 특성분석)

  • KIM, AERHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.660-669
    • /
    • 2016
  • A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.

The Contact Resistance and Corrosion Properties of Carburized 316L Stainless Steel (침탄된 316L 스테인리스 강의 접촉저항 및 내식 특성)

  • Hong, Wonhyuk;Ko, Seokjin;Jang, Dong-Su;Lee, Jung Joong
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.192-196
    • /
    • 2013
  • Stainless steels (AISI 316L) are carburized by Inductively coupled plasma using $CH_4$ and Ar gas. The ${\gamma}_c$ phase(S-phase) is formed on the surface of stainless steel after carburizing process. The XRD peak of carburized samples is shifted to lower diffracting angle due to lattice expansion. Overall, the thickness of ${\gamma}_c$ phase showed a linear dependence with respect to increasing temperature due to the faster rate of diffusion of carbon. However, at temperatures above 500, the thickness data deviated from the linear trend. It is expected that the deviation was caused from atomic diffusion as well as other reactions that occurred at high temperatures. The interfacial contact resistance (ICR) and corrosion resistance are measured in a simulated proton exchange membrane fuel cell (PEMFC) environment. The ICR value of the carburized samples decreased from 130 $m{\Omega}cm^2$ (AISI 316L) to about 20 $m{\Omega}cm^2$. The sample carburized at 200 showed the best corrosion current density (6 ${\mu}Acm^{-2}$).

Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA/THS-PSA for Fuel Cell Applications (연료전지 응용을 위한 다공성막에 가교된 PVA/PSSA-MA/THS-PSA의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구)

  • Kim, Il-Hyoung;Kim, Sung-Pyo;Lee, Hak-Min;Park, Chan-Jong;Rhim, Ji-Won;Cheong, Seong-Ihl
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.299-305
    • /
    • 2011
  • This study deals with the preparation of polymeric electrolyte membranes having high durability for the application of fuel cells. The membranes under investigation were prepared the impregnation to porous polyethylene membranes with poly(vinyl alcohol)(PVA), poly(styrene sulfonic acid-co-maleic acid), and (PSSA-MA)3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA). To characterize the resulting membranes, the water contents, the contact angles, FT-IR, the proton conductivity and the the modulus were measured. The proton conductivity of 30% content of THS-PSA at $55^{\circ}C$ gave excellent $1.27{\times}10^{-1}S/cm$ and the mechanical strength was improved 7 times higher up to the THS-PSA content 15%, as a result, the durability was elevated extensively.

Numerical Modeling of Current Density and Water Behavior at a Designated Cross Section of the Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지의 동작압력에 대한 가스 확산층의 위치 별 전류밀도 및 수분거동에 대한 수치해석)

  • Kang, Sin-Jo;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.161-170
    • /
    • 2012
  • There are many factors to consider when attempting to improve the efficiency of fuel cell operation, such as the operation temperature, humidity, stoichiometry, operation pressure, geometric features, etc. In this paper, the effects of the operation pressure were investigated to find the current density and water saturation behavior on a cross section designated by the design geometry. A two-dimensional geometric model was established with a gas channel that can provide $H_2$ to the anode and $O_2$ and water vapor to the cathode gas diffusion layer (GDL). The results from this numerical modeling revealed that higher operation pressures would produce a higher current density than lower ones, and the water saturation behavior was different at operation pressures of 2 atm and 3 atm in the cathode GDL. In particular, the water saturation ratios are higher directly below the collector than in other areas. In addition, this paper presents the dependence of the velocity behavior in the cathode on pressure changes, and the velocity fluctuations through the GDL are higher in the output area than in inlet area. This conclusion will be utilized to design more efficient fuel cell modeling of real fuel cell operation.