• 제목/요약/키워드: proteomic analysis

검색결과 366건 처리시간 0.028초

Systemic Approaches Identify a Garlic-Derived Chemical, Z-ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent

  • Jung, Yuchae;Park, Heejoo;Zhao, Hui-Yuan;Jeon, Raok;Ryu, Jae-Ha;Kim, Woo-Young
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.547-553
    • /
    • 2014
  • Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and $TGF{\beta}$ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

Styrene 노출에 반응을 보이는 혈청 단백질에 대한 프로테오믹스 분석 (Proteomic analysis of serum proteins responsive to styrene exposure)

  • 김기웅;허경화;원용림;정진욱;김태균;박인정
    • 한국산업보건학회지
    • /
    • 제17권3호
    • /
    • pp.235-244
    • /
    • 2007
  • By comparing the proteins from the workers exposed to styrene with the ones from controls, it may be possible to identify proteins that play a role in the occurrence and progress of occupational disease and thus to study the molecular mechanisms of occupational disease. In order to find the biomarkers for assessing the styrene effects early, before clinical symptoms develop and to understand the mechanisms of adverse health effects, we surveyed 134 employees, among whom 52 workers(30 male and 22 female) were chronically exposed to styrene in 10 glass-reinforced plastic boat manufacturing factories in Korea and 82 controls had never been occupationally exposed to hazardous chemicals including styrene. The age and drinking habits and serum biochemistry such as total protein, BUN and serum creatinine in both groups were significantly different. Exposed workers were divided into three groups according to exposure levels of styrene(G1, below 1/2 TLV; G2, 1/2 TLV to TLV; G3, above TLV). The mean concentration of airborne styrene in G1 group was $10.93{\pm}11.33ppm$, and those of urinary mandelic acid(MA) and phenylglyoxylic acid(PGA) were $0.17{\pm}0.21$ and $0.13{\pm}0.11g/g$ creatinine, respectively. The mean concentration of airborne styrene in G2 and G3 groups were $47.54{\pm}22.43$ and $65.33{\pm}33.47ppm$, respectively, and levels of urinary metabolites such as MA and PGA increased considerably as expected with the increase in exposure level of styrene. The airborne styrene concentration were significantly correlated to the urinary concentration of MA(r=0.784, p=0.000) and PGA(r=0.626, p<0.001). In the 2D electrophoresis, the concentration of five proteins including complement C3 precursor, alpha-1-antitrypsin(AAT), vitamin D binding protein precursor(DBP), alpha-1-B-glycoprotein(A1BG) and inter alpha trypsin inhibitor(ITI) heavy chain-related protein were significantly altered in workers exposed to styrene compared with controls. While expression of complement C3 precursor and AAT increased by exposure to styrene, expression of DBP, A1BG and ITI heavy chain-related protein decreased. These results suggest that the exposure of styrene might affects levels of plasma proteinase, carriers of endogenous substances and immune system. In particular, increasing of AAT with the increase in exposure level of styrene can explain the tissue damage and inflammation by the imbalance of proteinase/antiproteinase and decrease of DBP, A1BG and ITI heavy chain-related protein in workers exposed to styrene is associated with dysfunction and/or declination in immune system and signal transduction

Differentially Expressed Proteins in ER+ MCF7 and ER- MDA-MB-231 Human Breast Cancer Cells by RhoGDI-α Silencing and Overexpression

  • Hooshmand, Somayeh;Ghaderi, Abbas;Yusoff, Khatijah;Thilakavathy, Karuppiah;Rosli, Rozita;Mojtahedi, Zahra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3311-3317
    • /
    • 2014
  • Background: The consequence of Rho GDP dissociation inhibitor alpha (RhoGDI${\alpha}$) activity on migration and invasion of estrogen receptor positive ($ER^+$) and negative ($ER^-$) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDI${\alpha}$ and other proteins interacting directly or indirectly with RhoGDI${\alpha}$ in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest. Materials and Methods: $ER^+$ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDI${\alpha}$ using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDI${\alpha}$. Results: The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDI${\alpha}$ in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDI${\alpha}$ in MCF7, while only one protein was identified in the upregulation of RhoGDI${\alpha}$ in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-${\alpha}$ activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells. Conclusions: Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDI${\alpha}$ with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.

측두엽 간질환자의 혈청에서 프로테오믹스기법을 활용한 질병관련 단백질 동정 (Proteomic analysis of human serum from patients with temporal lobe epilepsy)

  • 이창우;유승택;최하영;고은정;곽용근
    • Clinical and Experimental Pediatrics
    • /
    • 제52권5호
    • /
    • pp.567-575
    • /
    • 2009
  • 목적 : 간질은 전세계인구의 0.5%에서 발병하며 유전적 성향이 많고, 이는 중추신경계의 과 흥분성에 기인한다고 알려져 있다. 최근 프로테오믹스기법의 발달로 질병관련 단백질 동정이 활발히 연구되어지고 있다. 더불어, 간질의 진단은 영상기법 및 뇌파 분석 등이 이용되고 있으나, 가장 손쉽고 경제적인 혈청단백질을 이용한 진단법은 확립되어 있지 못하다. 그러므로 본 연구에서는 측두엽 간질환자의 혈장 단백질을 분석하여 간질의 진단 표지단백질 및 질병관련단백질을 발굴하고자 하였다. 방 법 : 저자들은 8명의 측두엽 간질환자와 8명의 정상인 혈청을 비교하였다. 결 과 : 간질환자의 혈청에서 정상 혈청단백질과 유의하고 일관성 있는 차이를 보이는 12개의 단백질을 발견하였다. 그 중, 6개의 단백질을 동정하였고, 6개의 단백질은 동정하지 못하였다. 더불어, haptoglobin Hp2, PRO2675, immunoglobulin heavy chain constant region gamma 2와 1개의 명명되지 않은 단백질 및 3개의 미지의 단백질을 포함한 7개의 단백질은 간질환자의 혈액에서 증가하였다. 반면, MHC class I antigen, plasma retinol-binding protein precursor 및 3개의 미지의 단백질을 포함한 5개의 단백질은 감소하였다. 결 론 : MHC class I antigen, immunoglobulin heavy chain constant region gamma 2 및 수술 전에 증가하였던 3개의 미지의 단백질 중에서 1개, 감소하였던 3개의 미지의 단백질 중에서 2개를 포함한 모두 5개의 단백질은 간질을 일으키는 뇌 부위 절제 후 정상으로 회복되었다. 이는 이런 단백질들을 측두엽 간질의 진단 및 경과관찰인자로서, 활용할 수 있음을 시사한다. 나아가, 이러한 단백질들은 간질의 병태 생리 연구 및 새로운 치료약물개발의 표적 단백질로 활용될 수 있을 것이다.

Significance of $p27^{kip1}$ as potential biomarker for intracellular oxidative status

  • Quintos, Lesley;Lee, In-Ae;Kim, Hyo-Jung;Lim, Ji-Sun;Park, Ji-A;Sung, Mi-Kyung;Seo, Young-Rok;Kim, Jong-Sang
    • Nutrition Research and Practice
    • /
    • 제4권5호
    • /
    • pp.351-355
    • /
    • 2010
  • Our previous proteomic study demonstrated that oxidative stress and antioxidant delphinidin regulated the cellular level of $p27^{kip1}$ (referred to as p27) as well as some heat shock proteins in human colon cancer HT 29 cells. Current study was conducted to validate and confirm the regulation of these proteins using both in vitro and in vivo systems. The level of p27 was decreased by hydrogen peroxide in a dose-dependent manner in human colon carcinoma HCT 116 (p53-positive) cells while it was increased upon exposure to hydrogen peroxide in HT 29 (p53-negative) cells. However, high concentration of hydrogen peroxide (100 ${\mu}M)$ downregulated p27 in both cell lines, but delphindin, one of antioxidative anthocyanins, enhanced the level of p27 suppressed by 100 ${\mu}M$ hydrogen peroxide. ICR mice were injected with varying concentrations of hydrogen peroxide, delphinidin and both. Western blot analysis for the mouse large intestinal tissue showed that the expression of p27 was upregulated by 25 mg/kg BW hydrogen peroxide. To investigate the association of p27 regulation with hypoxia-inducible factor 1-beta (HIF-$1{\beta}$), the level of p27 was analyzed in wild-type mouse hepatoma hepa1c1c7 and Aryl Hydrocarbon Nuclear Translocator (arnt, HIF-$1{\beta}$)-defective mutant BPRc1 cells in the absence and presence of hydrogen peroxide and delphinidin. While the level of p27 was responsive to hydrogen peroxide and delphinidin, it remained unchanged in BPRc1, suggesting that the regulation of p27 requires functional HIF-$1{\beta}$. We also found that hydrogen peroxide and delphinidin affected PI3K/Akt/mTOR signaling pathway which is one of upstream regulators of HIFs. In conclusion, hydrogen peroxide and antioxidant delphinidin seem to regulate intracellular level of p27 through regulating HIF-1 level which is, in turn, governed by its upstream regulators comprising of PI3K/Akt/mTOR signaling pathway. The results should also encourage further study for the potential of p27 as a biomarker for intracellular oxidative or antioxidant status.

Two-dimensional gel Electrophoresis of Helicobacter pylori for Proteomic Analysis

  • Jung, Tae-Sung;Kang, Seung-Chul;Choi, Yeo-Jeong;Jeon, Beong-Sam;Park, Jeong-Won;Jung, Sun-Ae;Song, Jae-Young;Choi, Sang-Haeng;Park, Seong-Gyu;Choe, Mi-Young;Lee, Byung-Sang;Byun, Eun-Young;Baik, Seung-Chul
    • 대한미생물학회지
    • /
    • 제35권2호
    • /
    • pp.97-108
    • /
    • 2000
  • Two-dimensional gel electrophoresis (2-DE) is an essential tool of proteomics to analyse the entire set of proteins of an organism and its variation between organisms. Helicobacter pylori was tried to identify differences between strains. As the first step, whole H. pylori was lysed using high concentration urea contained lysis buffer [9.5 M Urea, 4% CHAPS, 35 mM Tris, 65 mM DTT, 0.01% SDS and 0.5% Ampholite (Bio-Rad, pH 3-10)]. The extract ($10\;{\mu}g$) was rehydrated to commercially available immobilised pH gradient (IPG) strips, then the proteins were separated according to their charges as the first dimensional separation. The IPG strips were placed on Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) to separate according to molecular mass of the proteins as the second dimension. The separated protein spots were visualised by silver staining in order to compare different expression of proteins between strains. Approximately 120 spots were identified in each mini-protein electrophoresised gel, furthermore about 65 to 75 spots were regarded as identical proteins in terms of pI value and molecular weight between strains used. In addition, distinct differences were found between strains, such as 219-1, Y7 and Y14, CH150. Two representative strains were examined using strips which had pH range from 4 to 7. This strips showed a number of isoforms which were considered large spots on pH range 3-10. Furthermore, the rest of spots on pH 4-7 IPG strips appeared very distinctive compared to broad range IPG strips. 2-DE seems to be an excellent tool for analysing and identifying variations between H. pylori strains.

  • PDF

NDP Kinase 유전자를 과발현시킨 형질전환 톨 페스큐 식물체의 저온 스트레스에 대한 내성 특성 (Characterization of Transgenic Tall Fescue Plants Overexpressing NDP Kinase Gene in Response to Cold Stress)

  • 이상훈;이기원;김경희;윤대진;곽상수;이병현
    • 한국초지조사료학회지
    • /
    • 제29권4호
    • /
    • pp.299-306
    • /
    • 2009
  • 저온 스트레스에 대한 내성을 지닌 신품종 톨 페스큐를 개발할 목적으로 CaMV35S 프로모터 하류에 NDP kinase 2 유전자가 항상적으로 발현하도록 제작한 벡터를 Agrobacterium법을 이용하여 톨 페스큐에 도입하였다. Hygromycin이 첨가된 선발배지에서 내성을 나타내며 재분화된 형질전환 식물체를 pot로 이식하여 기내순화 시킨 후, Southern blot 분석을 실시하여 본 결과, NDP kinase 2 유전자가 형질전환 식물체의 genome에 정상적으로 도입되었음을 확인하였다. 프로테옴 분석을 통하여 도입유전자의 조절을 받는 항산화관련 유전자들의 발현이 유도되었음을 확인 할 수 있었다. 형질전환 식물체 잎 절편을 산화스트레스 중의 하나인 저온 스트레스를 처리하여 세포의 손상 정도를 조사한 결과, 비형질전환체에 비해 형질전환체는 강한 내성을 나타내었다. 또한 유식물체 수준에서 저온 스트레스를 처리하여 내성을 비교한 결과, 비형질전환체에 비해 형질전환체는 높은 내성을 나타내었다. 이 형질전환 톨페스큐는 산화스트레스 내성 품종개발을 위한 소재로 활용 될 수 있을 것이다.

Differential Proteome Expression of in vitro Proliferating Hanwoo Stromal Vascular Cells from Omental, Subcutaneous and Intramuscular Depots in Response to Hormone Deprivation and IGF-1, Estradiol-17β Addition

  • Rajesh, Ramanna Valmiki;Kim, Seong-Kon;Park, Min-Ah;Kwon, Seulemina;Chang, Jong-Soo;Yoon, Du-Hak;Kim, Tae-Hun;Lee, Hyun-Jeong
    • Journal of Animal Science and Technology
    • /
    • 제52권3호
    • /
    • pp.175-186
    • /
    • 2010
  • The aim of this study was to analyze the proteome expressions of proliferating stromal vascular cells from Hanwoo omental, subcutaneous and intramuscular depots subjected to hormone deprivation and IGF-1, Estradiol-$17{\beta}$ addition. For hormone deprivation or addition studies, the cells were either grown in 10% charcoal-dextran stripped fetal bovine serum (CD-FBS) or in 10% FBS supplemented medium. Further, to analyze the effect of insulin like growth factor (IGF-1) and $17\beta$-Estradiol (E2), cells were grown in 10% CD-FBS containing IGF-1 (10 ng/ml) or E2 (10 nM). The results showed that hormone deprivation had a negative impact on proliferation among the cells from all depots without any growth difference. On comparison of proliferation levels, higher levels were observed in cells that were grown in 10% FBS than in 10% CD-FBS alone or with IGF-1/E2. Proteome expression from preadipocytes grown in hormone deprivation conditions were compared by 2D-DIGE and MALDIToF/ToF. A total of twelve different proteins were found to be differentially expressed under hormone deprivation conditions. Further, our proteomic analysis with DIGE under IGF-1 and E2 addition revealed four proteins with differential expression levels. Moreover, the results highlighted in this study offer a role for each differentially expressed protein with respect to their effect in positive or negative regulation on proliferation.

Analyses of Inter-cultivar Variation for Salinity Tolerance in Six Korean Rapeseed Cultivars

  • Lee, Yong-Hwa;Lee, Tae-Sung;Kim, Kwang-Soo;Jang, Young-Seok;Nam, Sang-Sik;Park, Kwang-Geun
    • 원예과학기술지
    • /
    • 제30권4호
    • /
    • pp.417-425
    • /
    • 2012
  • Salinity stress is one of the most serious factors limiting the productivity of agricultural crops. The aim of this study was to assess inter-cultivar (intraspecific) variation for salinity tolerance in six Korean rapeseed (Brassica napus L.) cultivars at the seedling stage. The effect of three different salinity stress levels (EC 4, 8, and 16 $dS{\cdot}m^{-1}$) on seedlings of six cultivars was investigated through leaf size, leaf dry weight, and leaf chlorosis. At the highest salinity level (16 $dS{\cdot}m^{-1}$), the mean decrease of leaf dry weight in 'Sunmang', 'Tammi', 'Tamla', 'Naehan', 'Youngsan', and 'Halla' was about 56.2, 56.9, 78.4, 79.3, 77.4, and 80.9%, respectively. 'Tammi' and 'Sunmang' showed much less reduction in leaf dry weight than all the other cultivars. In addition, diluted seawater treatments increased the occurrence of leaf chlorosis in six cultivars. At EC 8 and 16 $dS{\cdot}m^{-1}$, 'Naehan', 'Youngsan', and 'Halla' showed a higher level of leaf chlorosis than 'Tammi' 'Sunmang', and 'Tamla'. On the basis of these results, six cultivars were placed into salinity-tolerant and sensitive groups. 'Tammi' and 'Sunmang' were the salinity-tolerant cultivars, while 'Naehan', 'Halla', 'Youngsan', and 'Tamla' were the salinity-sensitive cultivars. 'Tammi' and 'Naehan' rated as the most tolerant and most sensitive cultivar, respectively. To further analyze protein expression profiles in 'Tammi' and 'Naehan', 2-D proteomic analysis was performed using the plants grown under diluted seawater treatments. We identified eight differentially displayed proteins that participate in photosynthesis, carbon assimilation, starch and sucrose metabolism, amino acid metabolism, cold and oxidative stress, and calcium signaling. The differential protein expressions in 'Tammi' and 'Naehan' are likely to correlate with the differential growth responses of both cultivars to salinity stress. These data suggest that 'Tammi' is better adapted to salinity stressed environments than 'Naehan'.

이차원 전기영동을 이용한 Lactobacillus acidophilus Strains의 Shiga Toxin-producing E. coli (STEC) 부착 억제와 관련된 단백질 발현 변화 분석 (Comparison of Specific Proteins of Shiga Toxin-producing E. coli (STEC) Adhesion by Lactobacillus acidophilus Strains Using Two Dimensional Gel Electrophoresis)

  • 김영훈;문용일
    • 한국축산식품학회지
    • /
    • 제26권2호
    • /
    • pp.263-268
    • /
    • 2006
  • 최근 들어 병원성 미생물의 저감화를 위하여 기존의 항생제 계열의 항균물질이 아닌 새로운 개념의 신소재 개발이 활발하게 진행 중에 있다. 특히, 이러한 신개념의 병원성 저감화 소재 중 인간의 장내에 존해하는 probiotics 균주의 특성을 이용하여 병원성 미생물을 예방하는 것은 보다 효과적인 방법 중의 하나가 될 수 있을 것으로 판단된다. 본 실험에서는 HT-29 cell을 대상으로 L. acidophilus 균체와 세포 파쇄물을 대상으로 STEC ATCC 43894의 장 상피세포 부착 억제능력을 측정하였다. 10 mg/mL의 세포 파쇄물이 존재하였을 때 $10^9cfu/mL$의 균체가 존재했을 때와 유사한 수준으로 STEC ATCC 43894의 부착 저해 효과가 관찰되었다. 하지만, L. acidophilus A4의 상등액에서는 그 저해 효과가 세포 파쇄물의 $5{\sim}10%$ 정도 수준으로 관찰되어 그 효과는 매우 적은 것으로 판단되었다. 또한, L. acidophilus A4의 세포 파쇄물이 STEC의 부착에 미치는 영향을 관찰하기 위하여 10mg/mL의 세포 파쇄물이 첨가된 배지에서 STEC의 단백질발현 양상을 확인하였다. 각 gel의 image에서 평균적으로 800개의 spot을 관찰할 수 있었으며 이중 2배 이상의 발현차이를 보이는 13개의 spot을 선발하였다. 7개의 spot은 세포파쇄물이 첨가되었을 때 발현이 증가하였으며 3개의 spot은 발현이 감소하였다. 흥미롭게도 3개의 단백질 spot은 세포파쇄물이 존재할 때만 발현되는 것을 확인하였다. 명확하지는 않지만 이러한 L. acidophilus A4의 세포 파쇄물에 존재하는 물질은 (1)STEC의 부착과 관련된 특정 단백질의 발현을 저해하거나 (2)STEC과 장상 피세포에서의 수용체 경합을 통해 부착을 억제하는 것으로 생각된다. 앞으로 이와 관련된 보다 세부적인 작용 메카니즘 연구 및 생화학적연구가 필요할 것으로 판단된다.