• Title/Summary/Keyword: proteolysis

Search Result 255, Processing Time 0.024 seconds

Protective Effects of Hemerocallis Fulva Extracts on Amyloid $\beta$-Protein-Induced Death in Neuronal Cells (아밀로이드 베타 단백질에 의해 유도된 신경세포 독성에 대한 원추리의 억제 효과 탐색)

  • Kim Eun-Sook;Choi Soo-Jin;Ryu Beung-Ho;Choi Jin-Ho;Oh Myung-Sok;Park Woo-Jin;Choi Young-Whan;Paik Do-Hyeon;Ha Kwon-Chul;Kang Dae-Ook;Cho Yong-Kweon;Park Ki-Tae;Moon Ja-Young
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.122-133
    • /
    • 2006
  • Objectives : The amyloid $\beta$-protein ($A\beta$) is the principal component of the senile plaques characteristic of Alzheimer's disease (AD) and elicits a toxic effect on neurons in vitro and in vivo. Many environmental factors including antioxidants and proteoglycans modify $A{\beta}toxicity$. In this study, we have investigated the protective effects of water- and organic solvent-extracts of Hemerocallis fulva root fractions pre-extracted with methanol on $A\beta$-induced oxidative cell death in cultured rat pheochromocytoma (PC12) cells. Methods : For this study, we used MTT reduction assay for detection of protective effects of water- and organic solvent-extracts of Hemerocallis fulva root fractions pre-extracted with methanol on $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells. We also used cell-based $\beta$-secretase assay system to investigate the inhibitory effect of water- and organic solvent-extracts of Hemerocallis fulva root on $\beta$-secretase activity. Results : We previously reported that methanol extracts of Hemerocallis fulva root strongly attenuated cytotoxicity induced by the three $A\beta$ fragments ($A{\beta}_{25-35},\;A{\beta}_{1-42}\;A{\beta}_{1-43}$) to both SK-N-MC and PC12 cells. In the present study, we found that butanol-, ethylacetate-, chloroform-, and water-extracts of Hemerocallis fulva root fractions pre-extracted with methanol had strong protective effects against $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells and inhibitory potency to $\beta$-secretase activity. Conclusion : These results suggest that butanol-, ethylacetate-, chloroform-, and water-extracts of Hemerocallis fulva root fractions pre-extracted with methanol may contain the protective component(s) against $A\beta$-induced cell death in PC12 cells as well as inhibitory component(s) to $\beta$-secretase activity.

  • PDF

Antioxidant Activity of Lactic Acid Bacteria Isolated from Korean Traditional Food Kimchi (한국전통식품 김치로부터 분리한 유산균주의 항산화 활성)

  • Kim, Da-Young;Kim, Hong Seok;Yoo, Jung Sik;Cho, Yoon Ah;Kim, Cheol-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.89-98
    • /
    • 2020
  • The purpose of this study was to investigate the probiotic properties of lactic acid bacteria (LAB) isolated from a Korean traditional food kimchi. Gram staining was performed by Macrogen (Macrogen, Inc.) for identification of the LAB. Five strains of LAB were identified, including DKGF9 (Lactobacillus plantarum), DKGF1 (L. paracasei ), DKGF8 (L. casei ), DK207 (L. casei ), and DK211 (L. casei ). The biological activities of the isolated strains were assessed. The results showed that heat resistance of the strains was similar to or higher than the commercial strain L. acidophilus LA-5. Indirect testing of the ability of the strains to attach to the mucin layer revealed that DKGF9, DKGF1, and DKGF8 have high binding affinities for the mucous layer. All strains showed antimicrobial activity similar to or higher than the commercial strain LA-5. In proteolysis experiments, the diameters of proteolysis zones of the five strains increased in the period of 24-72 h, with DKGF1 exhibiting the largest zone diameter. Three strains were selected based on their antioxidant activities. Among the five isolated strains, L. paracasei DKGF1 showed potential probiotic activity, and thus, it may be useful for the development of health-promoting products.

Comparative Study of Proteolytic Activities of Some Commercial Milk Clotting Enzymes on Bovine Skim Milk (상업적 응유효소의 탈지유에 대한 단백질 분해 작용)

  • Shin, H.S.;Kim, S.B.;Lim, J.W.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.801-808
    • /
    • 2002
  • Proteolytic activities of some commercial milk clotting enzymes(rennet, trypsin, pepsin, papain W-40, neutrase 1.5 and protease S) in bovine skim milk containing 0.02% $CaCl_2$ were determined by measuring DH(Degree of Hydrolysis), NPN(Non Protein Nitrogen) and by comparing patterns of SDS-PAGE(Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis). The DH of microbial enzymes(neutrase 1.5 and protease S) and trypsin in bovine skim milk were higher than those of pepsin and papain W-40. The amounts of NPN in the milk treated with trypsin and the other animal enzymes(rennet and pepsin) showed the highest and lowest degrees of proteolysis, respectively. SDS-PAGE showed that trypsin and protease S hydrolyzed $\alpha$-lactalbumin and papain W-40 hydrolyzed $\beta$-lactoglobulin slightly, while neutrase 1.5 hydrolyzed both $\alpha$-lactalbumin and $\beta$-lactoglobulin after treating for 90 min. Trypsin and protease S easily hydrolyzed ${\alpha}_s$-casein and $\beta$-casein, which were not hydrolyzed by rennet. Papain W-40 hydrolyzed $\kappa$-casein more than rennet as shown in SDS-PAGE. Based on the results of the experiments, the DH and NPN of trypsin, neutrase 1.5 and protease S were shown to be higher than those of the other enzymes. The SDS-PAGE patterns of papain W-40 and neutrase 1.5 were similar with that of rennet.

Isolation of Bacteria from Jeotgal Using High-salt-content Media and Their Growths in High-salt Condition (고염에서 생장하는 젓갈 유래 Bacteria의 분리 및 고염에서의 생육 특성)

  • An, Doo-Hyun;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.294-300
    • /
    • 2011
  • Proteolytic bacteria were isolated from Myeolchi-jeotgal and Saeu-jeotgal using high-salt-content media and their growths in the media containing 25% NaCl were monitored to draw the role of bacteria in the ripening of jeotgal. The most populous genus in Myeolchi-jeotgal detected on agar media with 15% NaCl was Bacillus and its relatives, while the most populous in Saeu-jeotgal was Staphylococcus. Among the isolates, Virgibacillus halodenitrificans from Myeolchi-jeotgal and Halobacillus trueperi from Saeu-jeotgal showed proteinase activities. The species from Myeolchi-jeotgal showed proteinase activity on the agar media with 8% NaCl were similar to those isolated from the media with 15% NaCl. The dominant of Myeolchi-jeotgal isolated at the 15% NaCl concentration may be involved in the proteolysis. The proteolytic species from Saeu-jeotgal on the agar media with 8% NaCl were the genera Bacillus, Salinicoccus, and Salimicrobium those were not the dominants at 15% NaCl condition. The dominant isolates from Saeu-jeotgal on agar media with 15% NaCl may not be involved in the proteolysis of Saeu-jeotgal. Vb. halodenitrificans and Staphylococcus equorum, the dominant species from Myeolchi-jeotgal and Saeu-jeotgal, showed growths at the nutrient broth containing 25% NaCl. They may play a significant role in the ripening of jeotgal and have a high possibility to be used as the starter.

Proteolysis of Defatted Rice Bran Using Commercial Proteases and Characterization of Its Hydrolysates (탈지미강 단백질의 가수분해 및 분해물의 특성 연구)

  • Kim, Chang-Won;Kim, Hyun-Seok;Kim, Byung-Yong;Baik, Moo-Yeol
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • The defatted rice bran (DRB) was enzymatically hydrolyzed using eight commercial proteases for 4hr at optimum pH and temperature. Proteolytic hydrolysates were examined in supernatant and precipitate using lowry, semimicro kjeldahl and gravimetric method using weight difference before and after enzymatic hydrolysis. In lowry and kjeldahl protein assay method, two proteases (Alcalase and Protease N) were found to be the most effective enzymes. In gravimetric method, 60.6~118.3 mg protein/g DRB was hydrolyzed after eight commercial proteases treatments. Similar to lowry and kjeldahl method, 118.3 and 107.1 mg protein/g DRB were hydrolyzed after Alcalase and Protease N treatments, respectively. When two or three effective proteases (Protamex, Alcalase and Protease N) were applied at one time to obtain synergistic effect, significant increase (P<0.05) was observed when three proteases were applied at one time (63.4 mg protein/g DRB in lowry method and 204.5 mg protein/g DRB in gravimetric method). This result suggests that Alcalase and Protease N were the most effective enzymes for proteolysis of DRB and three commercial enzymes (Protamex, Alcalase and Protease N) showed the synergistic effect on the hydrolysis of DRB.

Structural Characterization of Mouse HAUSP, a Proteolysis Regulator of p53

  • Lee, Hye-Jin;Yoo, Kyong-Jai;Baek, Kwang-Hyun
    • Animal cells and systems
    • /
    • v.8 no.3
    • /
    • pp.205-212
    • /
    • 2004
  • The tumor suppressor protein p53 is stabilized by the herpes-virus-associated ubiquitin-specific protease (HAUSP), a deubiquitinating enzyme. We previously isolated and characterized a mouse orthologue of HAUSP, mHAUSP. mHAUSP cDNA consisted of 3,312 bp encodes 1,103 amino acids with a molecular weight of approximately 135 kDa containing highly conserved Cys, Asp (I), His, and Asn/Asp (II) domains. In this study, we carried out site-directed mutagenesis of 6 conserved amino acids (Cys224, Gln231, Asp296, His457, His465, and Asp482) in Cys box, QQD box, and His box. Interestingly, the conserved Gln 231 was not essential for the catalytic activity of mHAUSP. However, the other conserved amino acids were required for deubiquitinating activity of mHAUSP. We performed isopeptidase assay and confirmed that mHAUSP is able to remove ubiquitin from ubiquitinated substrates. In addition, we observed that mHAUSP induces apoptosis in HeLa cells.

Effect of Orally Administered Branched-chain Amino Acids on Protein Synthesis and Degradation in Rat Skeletal Muscle

  • Yoshizawa, Fumiaki;Nagasawa, Takashi;Sugahara, Kunio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.133-140
    • /
    • 2005
  • Although amino acids are substrates for the synthesis of proteins and nitrogen-containing compounds, it has become more and more clear over the years that these nutrients are also extremely important as regulators of body protein turnover. The branched-chain amino acids (BCAAs) together or simply leucine alone stimulate protein synthesis and inhibit protein breakdown in skeletal muscle. However, it was only recently that the mechanism(s) involved in the regulation of protein turnover by BCAAs has begun to be defined. The acceleration of protein synthesis by these amino acids seems to occur at the level of peptide chain initiation. Oral administration of leucine to food-deprived rats enhances muscle protein synthesis, in part, through activation of the mRNA binding step of translation initiation. Despite our knowledge of the induction of protein synthesis by BCAAs, there are few studies on the suppression of protein degradation. The recent findings that oral administration of leucine rapidly reduced $N^{\tau}$-methylhistidine (3-methylhistidine; MeHis) release from isolated muscle, an index of myofibrillar protein degradation, indicate that leucine suppresses myofiblilar protein degradation. The details of the molecular mechanism by which leucine inhibits proteolysis is just beginning to be elucidated. The purpose of this report was to review the current understanding of how BCAAs act as regulators of protein turnover.

Manipulation of the Rumen Ecosystem to Support High-Performance Beef Cattle - Review -

  • Jouany, J.P.;Michalet-Doreau, B.;Doreau, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.96-114
    • /
    • 2000
  • Genetically selected beef cattle are fed high-energy diets in intensive production systems developed in industrial countries. This type of feeding can induce rumen dysfunctions that have to be corrected by farmers to optimise cost-effectiveness. The risk of rumen acidosis can be reduced by using slowly degradable starch, which partly escapes rumen fermentation and goes on to be digested in the small intestine. Additives are proposed to stabilise the rumen pH and restrict lactate accumulation, thus favouring the growth of cellulolytic bacteria and stimulating the digestion of the dietary plant cell wall fraction. This enhances the energy value of feeds when animals are fed maize silage for example. Supplementation of lipids to increase energy intake is known to influence the population of rumen protozoa and some associated rumen functions such as cellulolysis and proteolysis. The end products of rumen fermentation are also changed. Lipolysis and hydrogenation by rumen microbes alter the form of fatty acids supplied to animals. This effect is discussed in relation with the quality of lipids in beef and the implications for human health. Conditions for optimising the amount of amino acids from microbial proteins and dietary by-pass proteins flowing to the duodenum of ruminants, and their impact on beef production, are also examined.

Compositions, Protease Inhibitor and Gelling Property of Duck Egg Albumen as Affected by Salting

  • Quan, Tran Hong;Benjakul, Soottawat
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.14-25
    • /
    • 2018
  • Chemical compositions, trypsin inhibitory activity, and gelling properties of albumen from duck egg during salting of 30 days were studied. As the salting time increased, moisture content decreased, the salt content and surface hydrophobicity increased (p<0.05). Trypsin inhibitory activity and specific activity were continuously decreased throughout the salting time of 30 days (p<0.05). This coincided with the decrease in band intensity of inhibitor with molecular weight of 44 kDa as examined by inhibitory activity staining. Nevertheless, no differences in protein patterns were observed in albumen during the salting of 30 days. Based on texture profile analysis, hardness, springiness, gumminess, chewiness, and resilience of albumen gel decreased with increasing salting time. Conversely, salted albumen gels exhibited higher cohesiveness and adhesiveness, compared to those of fresh albumen. Scanning electron microscopic study revealed that gel of salted albumen showed the larger voids and less compactness. In general, salting lowered trypsin inhibitory activity and gelling property of albumen from duck egg to some extent. Nevertheless, the salted albumen with the remaining inhibitor could be an alternative additive for surimi or other meat products to prevent proteolysis.

Galactooligosaccharide and Sialyllactose Content in Commercial Lactose Powders from Goat and Cow Milk

  • Kim, Hyo-Hee;Yun, Sung-Seob;Oh, Chang-Hwan;Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.572-576
    • /
    • 2015
  • The most commonly used infant formulas contain lactose originating from cow milk. Goat milk has recently been claimed to be nutritionally more effective for infants than other milks. In baby foods, much emphasis is placed on the concentrations of intestinal microflora-promoting oligosaccharides, which are generally transferred into lactose from milk during crystallization process. Here we show that higher level of free sialic acid is present in goat lactose powder compared to cow lactose powder. Without proteinase K treatment, the amount of 3-sialyllactose and 6-sialyllactose were similar in goat and cow lactose powders. However, after proteolysis, 6-sialyllactose was present at higher levels in goat than in cow lactose powder. Galactooligosaccharides, a group of prebiotics, are present in milk in the form of glycoproteins. Galactooligosaccharide content was also higher in goat lactose powder than in cow lactose powder.