DOI QR코드

DOI QR Code

Comparative Study of Proteolytic Activities of Some Commercial Milk Clotting Enzymes on Bovine Skim Milk

상업적 응유효소의 탈지유에 대한 단백질 분해 작용

  • Shin, H.S. (Nam Yang Research & Development Center) ;
  • Kim, S.B. (Division of Animal Science, College of Agriculture, Gyeongsang Natinal University) ;
  • Lim, J.W. (Division of Animal Science, College of Agriculture, Gyeongsang Natinal University)
  • 신현수 (남양유업(주) 중앙연구소) ;
  • 김상범 (경상대학교 농과대학 축산과학부) ;
  • 임종우 (경상대학교 농과대학 축산과학부)
  • Published : 2002.12.31

Abstract

Proteolytic activities of some commercial milk clotting enzymes(rennet, trypsin, pepsin, papain W-40, neutrase 1.5 and protease S) in bovine skim milk containing 0.02% $CaCl_2$ were determined by measuring DH(Degree of Hydrolysis), NPN(Non Protein Nitrogen) and by comparing patterns of SDS-PAGE(Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis). The DH of microbial enzymes(neutrase 1.5 and protease S) and trypsin in bovine skim milk were higher than those of pepsin and papain W-40. The amounts of NPN in the milk treated with trypsin and the other animal enzymes(rennet and pepsin) showed the highest and lowest degrees of proteolysis, respectively. SDS-PAGE showed that trypsin and protease S hydrolyzed $\alpha$-lactalbumin and papain W-40 hydrolyzed $\beta$-lactoglobulin slightly, while neutrase 1.5 hydrolyzed both $\alpha$-lactalbumin and $\beta$-lactoglobulin after treating for 90 min. Trypsin and protease S easily hydrolyzed ${\alpha}_s$-casein and $\beta$-casein, which were not hydrolyzed by rennet. Papain W-40 hydrolyzed $\kappa$-casein more than rennet as shown in SDS-PAGE. Based on the results of the experiments, the DH and NPN of trypsin, neutrase 1.5 and protease S were shown to be higher than those of the other enzymes. The SDS-PAGE patterns of papain W-40 and neutrase 1.5 were similar with that of rennet.

상업적 단백질 분해 효소에 0.02% $CaCl_2$를 첨가하여 응유 활성화를 시킨 탈지유에 대한 분해 작용의 결과를 요약하면 다음과 같다. 다양한 효소별 가수분해 시간에 따른 가수분해도는 미생물 유래 효소와 trypsin은 pepsin과 papain W-40보다 높은 분해도를 나타냈다. 12% TCA 용액에 가용성인 NPN의 양은 trypsin이 가장 높은 분해도를 나타내었고 rennet과 pepsin이 가장 낮은 분해도를 보였다. 전기영동에 있어서 trypsin과 protease S는 $\alpha$- lactalbumin을 분해하였고 papain w-40은 $\beta$- lactoglobulin을 미약하게 분해하였으며 neutrase 1.5는 90분 이후부터 $\alpha$-lactalbumin과 $\beta$-lactoglobulin을 분해하였다. Rennet과 비교한 전기영동상에서는 rennet에 의해 분해 되지 않은 ${\alpha}_s$- casein과 $\beta$-casein을 trypsin과 protease S가 다량 분해하였고 $\kappa$-casein은 rennet에 비해 papain W-40이 상당 수준의 분해상을 나타내었다. 이상의 결과 가수분해도 및 NPN 양은 trypsin, neutrase 1.5 및 protease S가 다른 효소에 비해 높게 나타났으며, 전기영동상에서는 pepsin과 neutrase 1.5가 rennet과 유사한 경향을 나타내었다.

Keywords

References

  1. Adler-Nissen, J. 1979. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 27:1256.
  2. Castro, S., Peyronel, D. V. and Cantera, A. M. B. 1996. Proteolysis of whey proteins by a Bacillus subtilis enzyme preparation. Int. Dairy J. 6:285.
  3. Dalgleish, D. G. 1987. The enzymatic coagulation of milk. In cheese chemistry, physics and Microbiology. Vol. I. P. F. Fox. Elsevier Applied Science, London. p. 63-96.
  4. El-Shibiny, S. and El-Salam, H. A. 1977. Action of milk clotting enzymes on $\alpha_s$-caseins from buffalo's milk. J. Dairy Sci. 60:1519.
  5. Guo, M. R., Fox, P. F. and Flynn, A. 1995. Susceptibility of $\beta$-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. J. Dairy Sci. 78:2336.
  6. Jost, R., Monti, J. C. and Hidelgo, J. 1976. Natural proteolysis in whey and susceptibility of whey proteins to acidic protease of rennet. J. Dairy Sci. 59:1568.
  7. Krause, W., Partzsch, M., Hasson, Z. M. R. and Haufe, T. 1998. Substrate and binding specificity of aspactic proteases with milk clotting properties. Nahrung. 42:162.
  8. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature(Lord). 227:680.
  9. Lampert, L. M. 1975. Modern dairy products. Food Trade Press. Third edition. p. 317.
  10. Lieske, B. and Konrad, G. 1996. Interrelation between pH and availability of $\alpha$-lactalbumin and $\beta$-lactoglobulin for proteolysis by papain. Int. Dairy J. 6:359.
  11. Lopes, A., Teixeira, G., Liberato, M. C., Pais, M. S. and Clemente, A. 1998. New vegetal sources for milk clotting enzymes. J. Molecular Catalysis B:Enzymatic. 5:63.
  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265.
  13. McDonagh, D. and FitzGerald, R. J. 1998. Production of caseinophosphopeptides(CPPs) from sodium caseinate using a range of commercial protease preparations. Int. Dairy J. 8:39.
  14. McMahon, D. J. and Brown, R. J. 1984. Enzymic coagulation of casein micelles:A review. J. Dairy Sci. 67:919.
  15. Monti, J. C. and Jost, R. 1978. Enzymatic solubilization of heat denatured cheese whey protein. J. Dairy Sci. 61:1233.
  16. Otte, J., Zakora, M., Qvist, K. B., Olsen, C. E. and Barkholt, V. 1997. Hydrolysis of bovine $\beta$-lactoglobulin by various proteases and identification of selected peptides. Int. Dairy J. 7:835.
  17. Picon, A., Medina, M. and Nunez, M. 1995. Prediction of clotting time for milk coagulation by mixtures of proteolytic enzymes. Food chem. 52: 411.
  18. Rank, T. C., Grappin, R. and Olson, N. F. 1985. Secondary proteolysis of cheese during ripening;A review. J. Dairy Sci. 68:801.
  19. Shah, B., Kumar, S. R. and Pevi, S. 1995. Immobilized proteolytic enzymes on resinous materials and their use in milk-clotting. Process Biochem. 30:63.
  20. Smyth, M. and FitzGerald, R. J. 1998. Relation- ship between some characteristics of WPC hydrolysates and the enzyme complement in commercially available proteinase preparations. Int. Dairy J. 8:819.
  21. Sood, V. K. and Kosikowski, F. V. 1979. Accelerated cheddar cheese ripening by added microbial enzyme. J. Dairy Sci. 62:1865.
  22. Steffl. A., Schreiber, R., Hafenmair, M. and Kessler, H. G. 1999. Influence of whey protein aggregates on the renneting properties of milk. Int. Dairy J. 9:403.
  23. Sullivan, J. J., Lynette, M., Rood, J. I. and Jago, G. R. 1973. The enzymic degradation of bitter pephides by starter strephococi. Aust. J. Dairy Tech. 28:20.
  24. Wong, N. P., Robert, J., Mark, K. and Flmer, H. H. 1988. Fundamentals of dairy chemistry. Third edition. Van Nostrand Reinhold. p. 609-619.
  25. Yousif, B. H., Mcmahon, D. J. and Shammet, K. M. 1996. Milk-clotting enzymes from solanum dobium plant. Int. Dairy J. 6:637.
  26. Zdenko. P. 1969. Protease composition of a rennet substitute from Bacillus subtilis and properties of its component protease. J. Dairy Sci. 52:1372.
  27. 최인욱, 김기성, 임상동, 김희수. 1997. Casein 가수분해물 소재 철분결합 Peptide에 관한 연구. 한국식품과학회지. 29:1052.