• Title/Summary/Keyword: protein tyrosine phosphatase 1B

Search Result 78, Processing Time 0.026 seconds

Immunomodulatory Effects of Euglena gracilis Extracts (Euglena gracilis 추출물의 면역조절 및 생리활성 분석)

  • Yu, Sun Nyoung;Park, Bo Bae;Kim, Ji Won;Hwang, You Lim;Kim, Sang Hun;Kim, Sunah;Lee, Taeho;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.183-191
    • /
    • 2021
  • Euglena gracilis is a microalga of great biotechnological interest that can create high levels of bioactive compounds, such as tocopherol, paramylon, and folic acid. The objective of this study was to investigate the biological activities of extracts from E. gracilis, especially those focused on immunological activity. E. gracilis biomass was extracted with hot water (HWE) and the remaining pellet was continuously extracted with methanol (HWME). First, we examined the effect of two extracts from E. gracilis on the production of nitric oxide (NO) and the expression of pro-inflammation cytokines, including IL-1β, IL-6, and TNF-α in murine macrophage RAW 264.7 cells. HWE treatment dose-dependently increased the production of IL-1β and TNF-α. On the other hand, treatment with HWME significantly decreased the generation of NO and pro-inflammatory cytokines (IL-6 and TNF-α) in lipopolysaccharide (LPS)-stimulated macrophage cells. In addition, other biological activities of the extracts were further analyzed: α-glucosidase inhibition, protein tyrosine phosphatase (PTP1B) inhibition, tyrosinase inhibition, xanthine oxidase (XO) inhibition, and angiotensin-converting enzyme (ACE) inhibition. Analysis of these biological activities showed that HWE has more inhibitory effects than HWME against α-glucosidase, tyrosinase, and XO agents. However, the inhibition of PTP1B and ACE with HWME were higher than with HWE. Taken together, the results suggested that E. gracilis possesses various biological activities―especially immunological capabilities―through regulation of cytokine production. Therefore, E. gracilis extract may be potentially useful for food material with immune-regulating effects.

Characterization of Antidiabetic Compounds from Extract of Torreya nucifera (비자나무 추출물의 항당뇨 활성물질의 특성 연구)

  • Kim, Ji Won;Kim, Dong-Seob;Lee, Hwasin;Park, Bobae;Yu, Sun-Nyoung;Hwang, You-Lim;Kim, Sang Hun;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Natural products have gained increasing attention due to their advantage of long-term safety and low toxicity for a very long time. Torreya nucifera is widespread in southern Korea and Jeju Island and its seeds are commonly used as edible food. Oriental ingredients have often been reported for their insecticidal, antioxidant and antibacterial properties, but there have not yet been any studies on their antidiabetic effect. In this study, we investigated several biological activities of T. nucifera pericarp (TNP) and seeds (TNS) extracts and proceeded to characterize the antidiabetic compounds of TNS. The initial results suggested that TNS extract at 15 and 10 ㎍/ml concentration has inhibitory effects on α-glucosidase and protein tyrosine phosphatase 1B, that is 14.5 and 4.35 times higher than TNP, respectively. Thus, the stronger antidiabetic TNS was selected for the subsequent experiments to characterize its active compounds. Ultrafiltration was used to determine the apparent molecular weight of the active compounds, showing 300 kDa or more. Finally the mixture was then partially purified using Diaion HP-20 column chromatography by eluting with 50~100% methanol. Therefore we concluded that the active compounds of TNS have potential as therapeutic agents in functional food or supplemental treatment to improve diabetic diseases.

Protein tyrosine phosphatase controls breast cancer invasion through the expression of matrix metalloproteinase-9

  • Hwang, Bo-Mi;Chae, Hee Suk;Jeong, Young-Ju;Lee, Young-Rae;Noh, Eun-Mi;Youn, Hyun Zo;Jung, Sung Hoo;Yu, Hong-Nu;Chung, Eun Yong;Kim, Jong-Suk
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.533-538
    • /
    • 2013
  • The expression of matrix metalloproteinases (MMPs) produced by cancer cells has been associated with the high potential of metastasis in several human carcinomas, including breast cancer. Several pieces of evidence demonstrate that protein tyrosine phosphatases (PTP) have functions that promote cell migration and metastasis in breast cancer. We analyzed whether PTP inhibitor might control breast cancer invasion through MMP expression. Herein, we investigate the effect of 4-hydroxy- 3,3-dimethyl-2H benzo[g]indole-2,5(3H)-dione (BVT948), a novel PTP inhibitor, on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. The expression of MMP-9 and cell invasion increased after TPA treatment, whereas TPA-induced MMP-9 expression and cell invasion were decreased by BVT948 pretreatment. Also, BVT948 suppressed NF-${\kappa}B$ activation in TPA-treated MCF-7 cells. However, BVT948 didn't block TPA-induced AP-1 activation in MCF-7 cells. Our results suggest that the PTP inhibitor blocks breast cancer invasion via suppression of the expression of MMP-9.

Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes

  • Maret, Wolfgang
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • About 20 chemical elements are nutritionally essential for humans with defined molecular functions. Several essential and nonessential biometals are either functional nutrients with antidiabetic actions or can be diabetogenic. A key question remains whether changes in the metabolism of biometals and biominerals are a consequence of diabetes or are involved in its etiology. Exploration of the roles of zinc (Zn) in this regard is most revealing because 80 years of scientific discoveries link zinc and diabetes. In pancreatic ${\beta}$- and ${\alpha}$-cells, zinc has specific functions in the biochemistry of insulin and glucagon. When zinc ions are secreted during vesicular exocytosis, they have autocrine, paracrine, and endocrine roles. The membrane protein ZnT8 transports zinc ions into the insulin and glucagon granules. ZnT8 has a risk allele that predisposes the majority of humans to developing diabetes. In target tissues, increased availability of zinc enhances the insulin response by inhibiting protein tyrosine phosphatase 1B, which controls the phosphorylation state of the insulin receptor and hence downstream signalling. Inherited diseases of zinc metabolism, environmental exposures that interfere with the control of cellular zinc homeostasis, and nutritional or conditioned zinc deficiency influence the pathobiochemistry of diabetes. Accepting the view that zinc is one of the many factors in multiple gene-environment interactions that cause the functional demise of ${\beta}$-cells generates an immense potential for treating and perhaps preventing diabetes. Personalized nutrition, bioactive food, and pharmaceuticals targeting the control of cellular zinc in precision medicine are among the possible interventions.

Ferulate, an Active Component of Wheat Germ, Ameliorates Oxidative Stress-Induced PTK/PTP Imbalance and PP2A Inactivation

  • Koh, Eun Mi;Lee, Eun Kyeong;Song, Chi Hun;Song, Jeongah;Chung, Hae Young;Chae, Chang Hoon;Jung, Kyung Jin
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.333-341
    • /
    • 2018
  • Ferulate is a phenolic compound abundant in wheat germ and bran and has been investigated for its beneficial activities. The aim of the present study is to evaluate the efficacy of ferulate against the oxidative stress-induced imbalance of protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), and serine/threonine protein phosphatase 2A (PP2A), in connection with our previous finding that oxidative stress-induced imbalance of PTKs and PTPs is linked with proinflammatory nuclear factor-kappa B $(NF-{\kappa}B)$ activation. To test the effects of ferulate on this process, we utilized two oxidative stress-induced inflammatory models. First, YPEN-1 cells were pretreated with ferulate for 1 hr prior to the administration of 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). Second, 20-month-old Sprague-Dawley rats were fed ferulate for 10 days. After ferulate treatment, the activities of PTKs, PTPs, and PP2A were measured because these proteins either directly or indirectly promote $NF-{\kappa}B$ activation. Our results revealed that in YPEN-1 cells, ferulate effectively suppressed AAPH-induced increases in reactive oxygen species (ROS) and $NF-{\kappa}B$ activity, as well as AAPH-induced PTK activation. Furthermore, ferulate also inhibited AAPH-induced PTP and PP2A inactivation. In the aged kidney model, ferulate suppressed aging-induced activation of PTKs and ameliorated aging-induced inactivation of PTPs and PP2A. Thus, herein we demonstrated that ferulate could modulate PTK/PTP balance against oxidative stress-induced inactivation of PTPs and PP2A, which is closely linked with $NF-{\kappa}B$ activation. Based on these results, the ability of ferulate to modulate oxidative stress-related inflammatory processes is established, which suggests that this compound could act as a novel therapeutic agent.

Comparison of Main Compounds and Physiological Activities of Anthriscus sylvestris (L.) Hoffm. Roots and Aerial Parts Extracts (전호 지하부와 지상부 추출물의 주요성분 및 생리활성 비교)

  • Kim, Sol;Kim, Ha-Rim;Kim, Sang-Jun;Kim, Seon-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.2
    • /
    • pp.77-83
    • /
    • 2021
  • The number of people suffering from diabetes have been increased around the world. In this study, we investigated the antidiabetic and antioxidant effects of Anthriscus sylvestris(L.) Hoffm and its main compounds. It was divided into root(R) and aerial part(AP) for comparative analysis. Total polyphenol, total flavonoid content was higher in AP extract, but nodakenin content was higher in R(1169.13 ± 6.00 mg/g) extract. Antioxidant activity was also higher in AP extract. To compare antidiabetic efficacy, we analyzed the effects of R and AP extracts on ɑ-glucosidase inhibition(AGI), dipeptidyl peptidase-4(DPP-4) and protein tyrosine phosphatase(PTP)1B activity. R and AP extracts showed similar effects on AGI and DPP-4 activity in a concentration dependent manner, and there was no effect on PTP1B activation. Glucose uptake(139.51 ± 3.19%) in 3T3-L1 cells was more effective in the AP extract-treated group than the positive control, rosiglitazone, group. Both R and AP extracts were effective in protecting against pancreatic beta cell damage caused by hyperglycemia. These results suggest that Anthriscus sylvestris(L.) Hoffm. could be used as a candidate for diabetes treatment.

Anti-Diabetic and Anti-Inflammatory Effects of Green and Red Kohlrabi Cultivars (Brassica oleracea var. gongylodes)

  • Jung, Hyun Ah;Karki, Subash;Ehom, Na-Yeon;Yoon, Mi-Hee;Kim, Eon Ji;Choi, Jae Sue
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.281-290
    • /
    • 2014
  • The aim of the present study was to evaluate the anti-diabetic, anti-inflammatory, antioxidant potential, and total phenolic content (TPC) of green and red kohlrabi cultivars. Anti-diabetic and anti-inflammatory activities were evaluated via protein tyrosine phosphatase (PTP1B) and rat lens aldose reductase inhibitory assays and cell-based lipopolysaccharide (LPS)-induced nitric oxide (NO) inhibitory assays in RAW 264.7 murine macrophages. In addition, scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical, and peroxynitrite ($ONOO^-$) were used to evaluate antioxidant potential and TPC was selected to assess phytochemical characteristics. Between the two kohlrabi cultivars, red kohlrabi (RK) had two times more TPC than green kohlrabi (GK) and showed significant antioxidant effects in DPPH, ABTS, and $ONOO^-$ scavenging assays. Likewise, methanol (MeOH) extracts of RK and GK inhibited LPS-induced NO production in a dose dependent manner that was further clarified by suppression of iNOS and COX-2 protein production. The MeOH extracts of RK and GK exhibited potent inhibitory activities against PTP1B with the corresponding $IC_{50}$ values of $207{\pm}3.48$ and $287{\pm}3.22{\mu}g/mL$, respectively. Interestingly, the RK MeOH extract exhibited significantly stronger anti-inflammatory, anti-diabetic, and antioxidant effects than that of GK MeOH extract. As a result, our study establishes that RK extract with a higher TPC might be useful as a potent anti-diabetic, antioxidant, and anti-inflammatory agent.

Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Tran, Ha Thi Thanh;Dang, Hoang Vu;Nguyen, Viet Khong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.614-628
    • /
    • 2019
  • Objective: The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods: Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results: Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%-99%, while homologies between chicken and mammal proteins ranged between 13%-19%, and 13%-69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and ${\beta}2-microglobulin$ and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion: These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, ${\beta}2-microglobulin$, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.

Different Gene Expression on Human Blood by Administration of OLT-2 (OLT-2의 복용에 의한 인간 혈중 유전자 발현 변화)

  • Cha, Min-Ho;Moon, Jin-Seok;Jeon, Byung-Hun;Yoon, Yong-Gab;Yoon, Yoo-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.853-860
    • /
    • 2006
  • This study was performed to investigate genes which are differently expressed in human blood by administrating of OLT-2. OLT-2 was medical precipitation composed of three medicinal herbs, Ginseng Radix, Astragali Radix, Glycyrrhizae Radix, and anti-leukemia effect of it was evaluated from Byung Hun Jeon of Wonkwang University this study was approved by Institutional Review Board of Korea Institute of Oriental Medicine (Taejeon, Korea) and four male subjects participated in this study. Gene expressions were evaluated by cDNA chip, in which 24,000 genes were spotted. Hierarchical cluster and biological process against the genes, which expression changes were more than 1.6 fold, were constructed by cluster 3.0 providing Stanford University and EASE(http://apps1 .maid.nih.gov/DAVID). Five groups were clustered according to their expression patterns. Group A contained gene decreased by OLT-2 and increased genes by OLT-2 were involved in Group B, C, D. In biological process, expression of genes involved in cytokine or cell calcium signaling, such as interleukin 18 and G-protein beta 4 were increased, but protein tyrosine phosphatase receptor type c, which function is cell adhesion between antigen-presenting cell and T or B-cell, was decreased by OLT-2. This study provides the most comprehensive available survey of gene expression changes in response to anti-leukemia effect of OLT-2 in human blood.

Effect of Bisphenol A on Insulin-Mediated Glucose Metabolism In Vivo and In Vitro

  • Ko, Jeong-Hyeon;Kang, Ju-Hee;Park, Chang-Shin;Shin, Dong-Wun;Kim, Ji-Hye;Kim, Hoon;Han, Seung-Baik
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.348-354
    • /
    • 2008
  • Bisphenol A (BPA), an environmental endocrine disrupter, enters the human body continuously in food and drink. Young children are likely to be more vulnerable than adults to chemical exposure due to the immaturities of their organ systems, rapid physical development, and higher ventilation, metabolic rates, and activity levels. The direct effect of BPA on peripheral tissue might also be of importance to the development of insulin resistance. However, the influence that BPA has on insulin signaling molecules in skeletal muscle has not been previously investigated. In this study, we examined the effect of BPA on fasting blood glucose (FBG) in post-weaned Wistar rats and on insulin signaling proteins in C2C12 skeletal muscle cells. Subsequently, we investigated the effects of BPA on insulin-mediated Akt phosphorylation in C2C12 myotubes. In rats, BPA treatment (0.1-1,000 ng/mL for 24 hours) resulted in the increase of FBG and plasma insulin levels, and reduced insulin-mediated Akt phosphorylation. Furthermore, the mRNA expression of insulin receptor (IR) was decreased after 24 hours of BPA treatment in C2C12 cells in a dose-dependent manner, whereas the mRNA levels of other insulin signaling proteins, including insulin receptor substrate-1 (IRS-1) and 5'-AMP-dependent protein kinase (AMPK), were unaffected. Treatment with BPA increased GLUT4 expression and protein tyrosine phosphatase 1B (PTP1B) activity in C2C12 myotubes, but not in protein levels. We conclude that exposure to BPA can induce insulin resistance by decreasing IR gene expression, which is followed by a decrease in insulin- mediated Akt activation and increased PTP1B activity.