• Title/Summary/Keyword: protein tyrosine phosphatase

Search Result 151, Processing Time 0.024 seconds

Regulation of $Ca_v3.2Ca^{2+}$ Channel Activity by Protein Tyrosine Phosphorylation

  • Huh, Sung-Un;Kang, Ho-Won;Park, Jin-Yong;Lee, Jung-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.365-368
    • /
    • 2008
  • Calcium entry through $Ca_v3.2Ca^{2+}$ channels plays essential roles for various physiological events including thalamic oscillation, muscle contraction, hormone secretion, and sperm acrosomal reaction. In this study, we examined how protein tyrosine phosphatases or protein tyrosine kinases affect $Ca_v3.2Ca^{2+}$ channels reconstituted in Xenopus oocytes. We found that $Ca_v3.2$ channel activity was reduced by 25% in response to phenylarsine oxide (tyrosine phosphatase inhibitor), whereas it was augmented by 19% in response to Tyr A47 or herbimycin A (tyrosine kinase inhibitors). However, other biophysical properties of $Ca_v3.2$ currents were not significantly changed by the drugs. These results imply that $Ca_v3.2$ channel activity is capable of being increased by activation of tyrosine phosphatases, but is decreased by activation of tyrosine kinases.

Involvement of protein tyrosine phosphatases in adipogenesis: New anti-obesity targets?

  • Bae, Kwang-Hee;Kim, Won Kon;Lee, Sang Chul
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.700-706
    • /
    • 2012
  • Obesity is a worldwide epidemic as well as being a major risk factor for diabetes, cardiovascular diseases and several types of cancers. Obesity is mainly due to the overgrowth of adipose tissue arising from an imbalance between energy intake and energy expenditure. Adipose tissue, primarily composed of adipocytes, plays a key role in maintaining whole body energy homeostasis. In view of the treatment of obesity and obesity-related diseases, it is critical to understand the detailed signal transduction mechanisms of adipogenic differentiation. Adipogenic differentiation is tightly regulated by many key signal cascades, including insulin signaling. These signal cascades generally transfer or amplify the signal by using serial tyrosine phosphorylations. Thus, protein tyrosine kinases and protein tyrosine phosphatases are closely related to adipogenic differentiation. Compared to protein tyrosine kinases, protein tyrosine phosphatases have received little attention in adipogenic differentiation. This review aims to highlight the involvement of protein tyrosine phosphatases in adipogenic differentiation and the possibility of protein tyrosine phosphatases as drugs to target obesity.

Screening of Korean Marine Plants Extracts for Inhibitory Activity on Protein Tyrosine Phosphatase 1B

  • Lee, Hee-Jung;Kim, You-Ah;Lee, Jung-Im;Lee, Burm-Jong;Seo, Young-Wan
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.74-77
    • /
    • 2007
  • Crude extracts of 69 marine organisms (27 salt marsh plants and 42 seaweeds) were screened for the inhibitory activity against the protein tyrosine phosphatase 1B (PTP1) in vitro. The most active extracts were methanol extracts from Derbesia marina (80.6% in inhibitory activity) and Symphycladia latiscula (85.6%) at the concentration of $15{\mu}g/mL$. Methanol extracts of Codium adhaerens and Hisikia fuziformis were moderately inhibitory with 71.2 and 69.1% inhibition, respectively. It was peculiar that only the extracts from seaweeds show inhibitory activity where those from salt marsh plants do not show any significant effect.

Screening of the Inhibitory Activity of Medicinal Plants against VHR Dual-Specificity Protein Tyrosine Phosphatase (DS- PTPase) (생약의 VHR Dual - Specificity Protein Tyrosine Phosphatase (DS-PTPase) 저해 활성 검색)

  • Lee, Myung-Sun;Bae, Eun-Young;Oh, Won-Keun;Ahn, Soon-Cheol;Kim, Bo-Yeon;Sohn, Cheon-Bae;Ahn, Jong-Seog
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.1 s.128
    • /
    • pp.69-73
    • /
    • 2002
  • The methanol extracts of 162 herbal medicines were screened for the inhibitory activity against VHR dualspecificity protein tyrosine phosphatase (DS-PTPase). Seventeen medicinal plants, Scutellaria baicalensis, Cuscuta chinensis, Caesalpinia sappan, Arecae pericarpium, Rubus coreanus, Machilus thunbergii, Amsonia elliptica Cinnamomum cassia, Arisaema erubescens, Pueraria thunbergiana, Dendrobium moniliforme, Mentha arvensis, Peucedanum japonicum, Salvia miltiorrhiza, Leonurus sibiricus, Siegesbeckia orientalis, Prunella vulgaris showed potent VHR DS-PTPase inhibitory activity.

Thiophosphotyrosine을 함유한 peptide 유도체의 중간체 합성

  • 김은경;이응석
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.163-163
    • /
    • 1996
  • Peptide 유도체, 특히 tyrosine을 함유한 peptide 유도체는 항암제 개발을 위한 연구의 관심이 되고 있다. Thiophosphotyrosine을 함유한 peptide는, 종양 발현에 관련되는 여러 효소의 억제제로써, 즉 protein tyrosine kinase(PTK)의 억제제 및 protein tyrosine phosphatase(PTPase)의 억제제 혹은 cytosolic protein의 결합을 방지하는 차단제로 사용할 수 있으며 궁극적으로 항암제 개발에 응용할 수 있다. 이에, t-BOC chemistry를 이용하여 t-BOC-tyrosine을 출발물질로 하고, cyanoethyl 기를 phosphate protecting group으로 사용하여 thiophosphotyrosine을 함유한 peptide 유도체의 합성에 필요한 중요한 중간체 인 N-(tert-butoxycarbonyl)-O-(dicyanoethylthio-phosphene)-L-tyrosine을 합성하였다.

  • PDF

Structural and Biochemical Characterization of the Two Drosophila Low Molecular Weight-Protein Tyrosine Phosphatases DARP and Primo-1

  • Lee, Hye Seon;Mo, Yeajin;Shin, Ho-Chul;Kim, Seung Jun;Ku, Bonsu
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1035-1045
    • /
    • 2020
  • The Drosophila genome contains four low molecular weight-protein tyrosine phosphatase (LMW-PTP) members: Primo-1, Primo-2, CG14297, and CG31469. The lack of intensive biochemical analysis has limited our understanding of these proteins. Primo-1 and CG31469 were previously classified as pseudophosphatases, but CG31469 was also suggested to be a putative protein arginine phosphatase. Herein, we present the crystal structures of CG31469 and Primo-1, which are the first Drosophila LMW-PTP structures. Structural analysis showed that the two proteins adopt the typical LMW-PTP fold and have a canonically arranged P-loop. Intriguingly, while Primo-1 is presumed to be a canonical LMW-PTP, CG31469 is unique as it contains a threonine residue at the fifth position of the P-loop motif instead of highly conserved isoleucine and a characteristically narrow active site pocket, which should facilitate the accommodation of phosphoarginine. Subsequent biochemical analysis revealed that Primo-1 and CG31469 are enzymatically active on phosphotyrosine and phosphoarginine, respectively, refuting their classification as pseudophosphatases. Collectively, we provide structural and biochemical data on two Drosophila proteins: Primo-1, the canonical LMW-PTP protein, and CG31469, the first investigated eukaryotic protein arginine phosphatase. We named CG31469 as DARP, which stands for Drosophila ARginine Phosphatase.

Protein Tyrosine Phosphatase Profiling Analysis of HIB-1B Cells during Brown Adipogenesis

  • Choi, Hye-Ryung;Kim, Won Kon;Kim, Eun Young;Jung, Hyeyun;Kim, Jeong-Hoon;Han, Baek-Soo;You, Kwan-Hee;Lee, Sang Chul;Bae, Kwang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.1029-1033
    • /
    • 2012
  • A number of evidence have been accumulated that the regulation of reversible tyrosine phosphorylation, which can be regulated by the combinatorial activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), plays crucial roles in various biological processes including differentiation. There are a total of 107 PTP genes in the human genome, collectively referred to as the "PTPome." In this study, we performed PTP profiling analysis of the HIB-1B cell line, a brown preadipocyte cell line, during brown adipogenesis. Through RT-PCR and real-time PCR, several PTPs showing differential expression pattern during brown adipogenesis were identified. In the case of PTP-RE, it was shown to decrease significantly until 4 days after brown adipogenic differentiation, followed by a dramatic increase at 6 days. The overexpression of PTP-RE led to decreased brown adipogenic differentiation via reducing the tyrosine phosphorylation of the insulin receptor, indicating that PTP-RE functions as a negative regulator at the early stage of brown adipogenesis.

Phosphotyrosine Protein Phosphatase Activity Is Inversely Related to Metastatic Ability in Rat Prostatic Tumor Cell Subclonal Lines

  • Lee, Han-Soo
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.417-422
    • /
    • 1996
  • In clonal sublines with different metastatic ability derived from Dunning rat prostate tumor, phosphoamino acid levels of cellular proteins were determined. Cell lines with high metastatic ability exhibited 5-fold higher phosphotyrosine level than did cell lines with low metastatic ability, while the contents of phosphoserine and phosphothreonine were similar among cell lines examined, All cell lines showed similar activities of protein tyrosine kinases as well as overall protein kinases. Phosphotyrosine protein phosphatase (PTPP) activities of the cells with high metastatic ability were very low, compared to those of the cells with low metastatic ability, suggesting that the different phosphotyrosine levels among the cell lines were due to the difference in PTPP activities rather than protein tyrosine kinase activities. Cellular activities of prostatic acid phosphatase (PAcP), which has been reported to possess phosphotyrosine protein phosphatase activity, were shown to be inversely related to the phosphotyrosine levels and metastatic abilities of the prostate tumor cells, These results suggest that cellular PAcP activity, regulating phosphotyrosine levels of cellular proteins, is closely connected with the metastatic process in prostate tumor cells and can be utilized as a good biochemical marker for the diagnosis of metastasis of prostate tumor.

  • PDF

Expressing the Tyrosine Phosphatase (CaTPP1) Gene from Capsicum annuum in Tobacco Enhances Cold and Drought Tolerances

  • Hwang, Eul-Won;Park, Soo-Chul;Jeong, Mi-Jeong;Byun, Myung-Ok;Kwon, Hawk-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.50-56
    • /
    • 2008
  • As one way to approach to cold defense mechanism in plants, we previously identified the gene for protein-tyrosine phosphatase (CaTPP1) from hot pepper (Capsicum annuum) using cDNA microarray analysis coupled with Northern blot analysis. We showed that the CaTPP1 gene was strongly induced by cold, drought, salt and ABA stresses. The CaTPP1 gene was engineered under control of CaMV 35S promoter for constitutive expression in transgenic tobacco plants by Agrobacterium-mediated transformation. The resulting CaTPP1 transgenic tobacco plants showed significantly increased cold stress resistance. It also appeared that some of the transgenic tobacco plants showed increased drought tolerance. The CaTPP1 transgenic plants showed no visible phenotypic alteration compared to wild type plants. These results showed the involvement of protein tyrosine phosphatase in tolerance of abiotic stresses including cold and drought stress.