• Title/Summary/Keyword: protein therapy

Search Result 993, Processing Time 0.027 seconds

The Effect of Taping Therapy on the Expression of cFos Protein and Pain Suppression in Acute Ankle Sprain in Rats (흰쥐의 급성 발목삠에서 테이핑요법이 cFos 단백의 발현과 통증억제에 미치는 영향)

  • Choi, Suck-Jun;Byun, Sin-Kyu;Lee, Gyoung-Wan;Kim, Jae-Hyo;Yang, Seung-Bum
    • Korean Journal of Acupuncture
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Objectives : The purpose of this study was to evaluate effects of taping therapy on recovery of behavioral symptoms and neural excitability of the lumbar spinal cord in rat model for ankle sprain. Methods : Adult Sprague-Dawley rats was used and divided into 3 experimental groups: normal group(n=6), ankle sprain(n=6), and ankle sprain with taping treatment(n=6). In order to induce ankle sprain the right ankle joint was injured with 4~5 repetitive over-flexions and over-extensions manually. The severity of joint pain was evaluated by measuring foot weight bearing force ratio(FWBRF) of the hind limb and the injury-induced edema formation by diameter of the joint following ankle sprain. The changes of neural excitability in the lumbar spinal cord was tested by observation of cFos protein expression, a metabolic marker for neural excitation. Results : Severity of ankle injury induced in this experiment coincided with Grade 1 ankle sprain. Compared with ankle sprain group, ankle sprain+taping showed a significant reductions of joint pain as well as of edema formation at the ankle joint following ankle sprain. There was significant upregulation of cFos-immunoreactive neurons in the lumbar spinal cord 24 hours after ankle sprain. In contrast, taping therapy resulted in significant inhibition of cFos-immunoreactive neurons in the lumbar spinal cord. Conclusions : Collectively, these results suggest that taping therapy may be an alternative therapeutic intervention for symptom recovery of the mild ankle sprain.

Milk Proteins and Allergy (우유 단백질과 알레르기)

  • Nam, Myoung-Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • Food allergy is defined as adverse reactions toward food mediated by aberrant immune mechanisms. Therefore, an allergic response to a food antigen can be thought of as an aberrant mucosal immune response. Food allergy most often begins in the first 1~2 years of life with the process of sensitization by which the immune system responds to specific food proteins, most often with the development of allergen-specific immunoglobulin E (IgE). Over time, most food allergeies are lost, although allergy to some foods is often long lived. The most important allergen sources involved in early food allergy are milk, eggs, peanut, soybean, meat, fish and cereals. Milk allergy seem to be associated with casein and whey protein. Important features of proteins as allergenicity are size, abundance and stability. Strategies for the prevention of milk allergy is breast-feeding, partially hydrolysised infant formula, using of probiotics, immune components in milk, preparation of low allergenicity milk protein and allergy therapy (immune therapy).

  • PDF

Role of biomarkers in antimicrobial stewardship: physicians' perspectives

  • Hyeri Seok;Dae Won Park
    • The Korean journal of internal medicine
    • /
    • v.39 no.3
    • /
    • pp.413-429
    • /
    • 2024
  • Biomarkers are playing an increasingly important role in antimicrobial stewardship. Their applications have included use in algorithms that evaluate suspected bacterial infections or provide guidance on when to start or stop antibiotic therapy, or when therapy should be repeated over a short period (6-12 h). Diseases in which biomarkers are used as complementary tools to determine the initiation of antibiotics include sepsis, lower respiratory tract infection (LRTI), COVID-19, acute heart failure, infectious endocarditis, acute coronary syndrome, and acute pancreatitis. In addition, cut-off values of biomarkers have been used to inform the decision to discontinue antibiotics for diseases such as sepsis, LRTI, and febrile neutropenia. The biomarkers used in antimicrobial stewardship include procalcitonin (PCT), C-reactive protein (CRP), presepsin, and interleukin (IL)-1β/IL-8. The cut-off values vary depending on the disease and study, with a range of 0.25-1.0 ng/mL for PCT and 8-50 mg/L for CRP. Biomarkers can complement clinical diagnosis, but further studies of microbiological biomarkers are needed to ensure appropriate antibiotic selection.

Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase

  • Choi, Min Sik
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.533-538
    • /
    • 2018
  • Nitric oxide (NO) mediates various physiological and pathological processes, including cell proliferation, differentiation, and inflammation. Protein S-nitrosylation (SNO), a NO-mediated reversible protein modification, leads to changes in the activity and function of target proteins. Recent findings on protein-protein transnitrosylation reactions (transfer of an NO group from one protein to another) have unveiled the mechanism of NO modulation of specific signaling pathways. The intracellular level of S-nitrosoglutathione (GSNO), a major reactive NO species, is controlled by GSNO reductase (GSNOR), a major regulator of NO/SNO signaling. Increasing number of GSNOR-related studies have shown the important role that denitrosylation plays in cellular NO/SNO homeostasis and human pathophysiology. This review introduces recent evidence of GSNO-mediated NO/SNO signaling depending on GSNOR expression or activity. In addition, the applicability of GSNOR as a target for drug therapy will be discussed in this review.

Disseminated Cytomegalovirus Infection and Protein Losing Enteropathy as Presenting Feature of Pediatric Patient with Crohn's Disease

  • Cakir, Murat;Ersoz, Safak;Akbulut, Ulas Emre
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.18 no.1
    • /
    • pp.60-65
    • /
    • 2015
  • We report a pediatric patient admitted with abdominal pain, diffuse lower extremity edema and watery diarrhea for two months. Laboratory findings including complete blood count, serum albumin, lipid and immunoglobulin levels were compatible with protein losing enteropathy. Colonoscopic examination revealed diffuse ulcers with smooth raised edge (like "punched out holes") in the colon and terminal ileum. Histopathological examination showed active colitis, ulcerations and inclusion bodies. Immunostaining for cytomegalovirus was positive. Despite supportive management, antiviral therapy, the clinical condition of the patient worsened and developed disseminated cytomegalovirus infection and the patient died. Protein losing enteropathy and disseminated cytomegalovirus infection a presenting of feature in steroid-naive patient with inflammatory bowel disease is very rare. Hypogammaglobulinemia associated with protein losing enteropathy in Crohn's disease may predispose the cytomegalovirus infection in previously healthy children.

Development of Human Antibody Inhibiting RNase H Activity of Polymerase of Hepatitis B Virus Using Phage Display Technique (Phage Display 기법을 이용한 B형 간염 바이러스 Polymerase의 RNase H 활성을 억제하는 인간 단세포군 항체의 개발)

  • Lee, Seong-Rak;Song, Eun-Kyoung;Jeong, Young-Joo;Lee Young-Yi;Kim, Ik-Jung;Choi, In-Hak;Park, Sae-Gwang
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2004
  • Background: To develop a novel treatment strategy for hepatitis B virus infection, a major cause of liver chirosis and cancer, we aimed to make human monoclonal antibodies inhibiting RNase H activity of P protein playing in important role in HBV replication. In this regard, phage display technology was employed and demonstrated as an efficient cloning method for human monoclonal antibody. So this study analysed the usability of human monoclonal antibody as protein based gene therapy. Methods: RNase H of HBV was expressed as fusion protein with maltose binding protein and purified with amylose resin column. Single chain Fv (scFv) phage antibody library was constructed by PCR cloning using total RNAs of PBMC from 50 healthy volunteers. Binders to RNase H were selected with BIAcore 2000 from the constructed library, and purified as soluble antibody fragment. The affinity and sequences of selected antibody fragments were analyzed with BIAcore and ABI automatic sequencer, respectively. And finally RNase H activity inhibiting assay was carried out. Results: Recombinant RNase H expressed in E. coli exhibited an proper enzyme activity. Naive library of $4.46{\times}10^9cfu$ was screened by BIAcore 2000. Two clones, RN41 and RN56, showed affinity of $4.5{\times}10^{-7}M$ and $1.9{\times}10^{-7}M$, respectively. But RNase H inhibiting activity of RN41 was higher than that of RN56. Conclusion: We cloned human monoclonal antibodies inhibiting RNase H activity of P protein of HBV. These antibodies can be expected to be a good candidate for protein-based antiviral therapy by preventing a replication of HBV if they can be expressed intracellularly in HBV-infected hepatocytes.

The Calorie and Protein Intake of Critically Ill Patients Who Require Continuous Renal Replacement Therapy in the Intensive Care Unit (중환자실에서 지속성 신대체요법을 받은 신부전 환자의 칼로리와 단백질 공급 현황)

  • Lee, Ho-Sun;Park, Moo-Suk;Na, Sung-Won;Lee, Jae-Gil;Yoo, Tae-Hyun;Koh, Shin-Ok
    • Journal of the Korean Dietetic Association
    • /
    • v.15 no.4
    • /
    • pp.335-342
    • /
    • 2009
  • Forty-two percent of the patients with renal failure that requires continuous renal replacement therapy (CRRT) have been reported to have severe malnutrition, and preexisting malnutrition is a statistically significant and independent predictor of negative hospital outcomes. We performed this study to evaluate the appropriateness of the calorie and protein provided for the critically ill patients who require CRRT. One hundred forty-nine patients who received CRRT were enrolled. The demographic data, the length of the ICU stay and the mortality were recorded. The calorie/protein intake and the blood urea nitrogen (BUN), albumin and creatinine levels were used as nutritional parameters. The mean daily calorie intake during CRRT was 16.1${\pm}$7.4 kcal/kg, which was 64% of the recommended intake. Only 10% of the patients received the recommended caloric intake and the ratio of the enteral and parenteral calories was 26%/74%. The mean protein intake was 0.58${\pm}$0.34 g/kg, which was 38% of the recommended intake. The calorie and protein intakes at the termination of CRRT were significantly increased compared to the initial day of treatment, but they stayed under the recommended intake. The BUN, creatinine and albumin levels were significantly increased in the survival group (odds ratio for albumin: 2.73; creatinine: 2.43). A strategy to increase the nutrition provision is needed to improve the nutritional statuses and clinical outcomes of the critically ill patients who require CRRT.

  • PDF

Targeted Efficacy of Dihydroartemisinin for Translationally Controlled Protein Expression in a Lung Cancer Model

  • Liu, Lian-Ke;Wu, Heng-Fang;Guo, Zhi-Rui;Chen, Xiang-Jian;Yang, Di;Shu, Yong-Qian;Zhang, Ji-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2511-2515
    • /
    • 2014
  • Objective: Lung cancer is one of the malignant tumors with greatest morbidity and mortality around the world. The keys to targeted therapy are discovery of lung cancer biomarkers to facilitate improvement of survival and quality of life for the patients with lung cancer. Translationally controlled tumor protein (TCTP) is one of the most overexpressed proteins in human lung cancer cells by comparison to the normal cells, suggesting that it might be a good biomarker for lung cancer. Materials and Methods: In the present study, the targeted efficacy of dihydroartemisinin (DHA) on TCTP expression in the A549 lung cancer cell model was explored. Results and Conclusions: DHA could inhibit A549 lung cancer cell proliferation, and simultaneously up-regulate the expression of TCTP mRNA, but down-regulate its protein expression in A549 cells. In addition, it promoted TCTP protein secretion. Therefore, TCTP might be used as a potential biomarker and therapeutic target for non-small cell lung cancers.

Effect on the Inhibition of DNA-PK in Breast Cancer Cell lines(MDA-465 and MDA-468) with DNA-PKcs Binding Domain Synthetic Peptide of Ku80 (Ku80의 DNA-PKcs 결합부위 합성 Peptide 투여에 의한 유방암세포의 DNA-dependent protein kinase 억제 효과)

  • 김충희;김태숙;문양수;정장용;강정부;김종수;강명곤;박희성
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • DNA double-strand break (DSB) is a serious treat for the cells including mutations, chromosome rearrangements, and even cell death if not repaired or misrepaired. Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) bound to double strand DNA breaks are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and the interaction is essential for DNA-dependent protein kinase (DNA-PK) activity. The Ku80 mutants were designed to bind Ku70 but not DNA end binding activity and the peptides were treated in breast cancer cells for co-therapy strategy to see whether the targeted inhibition of DNA-dependent protein kinase (DNA-PK) activity sensitized breast cancer cells to ionizing irradiation or chemotherapy drug to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. We designed domains of Ku80 mutants, 26 residues of amino acids (HN-26) as a control peptide or 38 (HNI-38) residues of amino acids which contain domains of the membrane-translocation hydrophobic signal sequence and the nuclear localization sequence, but HNI-38 has additional twelve residues of peptide inhibitor region. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, resulting in inactivation of DNA-PK complex activity in breast cancer cells (MDA-465 and MDA-468). Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to irradiation or chemotherapy drugs. The growth of breast cancer cells was also inhibited. These results demonstrate the possibility of synthetic peptide to apply breast cancer therapy to induce apoptosis of cancer cells.

Photochemical Property and Photodynamic Activity of Tetrakis(2-naphthyl) Porphyrin Phosphorus(V) Complex

  • Hirakawa, Kazutaka;Aoki, Shunsuke;Ueda, Hiroyuki;Ouyang, Dongyan;Okazaki, Shigetoshi
    • Rapid Communication in Photoscience
    • /
    • v.4 no.2
    • /
    • pp.37-40
    • /
    • 2015
  • To examine the photosensitized biomolecules damaging activity, dimethoxyP(V)tetrakis(2-naphthyl)porphyrin (NP) and dimethoxyP(V)tetraphenylporphyrin (PP) were synthesized. The naphthyl moiety of NP hardly deactivated the photoexcited P(V)porphyrin ring in ethanol. In aqueous solution, the naphthyl moiety showed the quenching effect on the photoexcited porphyrin ring, possibly through electron transfer and self-quenching by a molecular association. Binding interaction between human serum albumin (HSA), a water soluble protein, and these porphyrins could be confirmed by the absorption spectral change. The apparent association constant of NP was larger than that of PP. It is explained by that more hydrophobic NP can easily bind into the hydrophobic pockets of HSA. The photoexcited PP effectively induced damage of the tryptophan residue of HSA, through electron transfer-mediated oxidation and singlet oxygen generation. NP also induced HSA damage during photo-irradiation and the contributions of the electron transfer and singlet oxygen mechanisms were speculated. The electron transfer-mediated mechanism to the photosensitized protein damage should be advantageous for photodynamic therapy in hypoxic condition. The quantum yield of the HSA photodamage by PP was significantly larger than that of NP. The quenching effect of the naphthyl moiety is considered to suppress the photosensitized protein damage. In conclusion, the naphthalene substitution to the P(V)porphyrins can enhance the binding interaction with hydrophobic biomacromolecules such as protein, however, this substitution may reduce the photodynamic effect of P(V)porphyrin ring in aqueous media.