• Title/Summary/Keyword: protein sensor

Search Result 141, Processing Time 0.032 seconds

Proteomics Analysis of Early Salt-Responsive Proteins in Ginseng (Panax ginseng C. A. Meyer) Leaves (초기 염류 스트레스 반응 인삼 잎 단백질체 분석)

  • Kim, So Wun;Min, Chul Woo;Gupta, Ravi;Jo, Ick Hyun;Bang, Kyong Hwan;Kim, Young-Chang;Kim, Kee-Hong;Kim, Sun Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.398-404
    • /
    • 2014
  • Salt stress is one of the major abiotic stresses affecting the yield of ginseng (Panax ginseng C. A. Meyer). The objective of this study was to identify bio-marker, which is early responsive in salt stress in ginseng, using proteomics approach. Ginseng plants were exposed to 5 ds/m salt concentration and samples were harvested at 0, 6, 12 and 18 hours after exposure. Total proteins were extracted from ginseng leaves treated with salt stress using Mg/NP-40 buffer and were separated on high resolution 2-DE. Approximately $1003{\pm}240$ (0 h), $992{\pm}166$ (6 h), $1051{\pm}51$ (12 h) and $990{\pm}160$ (18 h) spots were detected in colloidal CBB stained 2D maps. Among these, 8 spots were differentially expressed and were identified by using MALDI-TOF/TOF MS or/and LC-MS/MS. Ethylene response sensor-1 (spot GL 1), nucleotide binding protein (spot GL 2), carbonic anhydrase-1 (spot GL 3), thylakoid lumenal 17.9 kDa protein (spot GL 4) and Chlorophyll a/b binding protein (spot GL 5, GL 6) were up-regulated at the 12 and 18 hour, while RuBisCO activase B (spot GL 7) and DNA helicase (spot GL 8) were down-regulated. Thus, we suggest that these proteins might participate in the early response to salt stress in ginseng leaves.

The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction

  • Netto, Luis E.S.;Antunes, Fernando
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • A challenge in the redox field is the elucidation of the molecular mechanisms, by which $H_2O_2$ mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the $H_2O_2$ sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in $H_2O_2$ signaling that are not mutually exclusive. In the simplest pathway, $H_2O_2$ signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by $H_2O_2$ is too slow ($10^1M^{-1}s^{-1}$ range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high $H_2O_2$ concentrations, making the direct oxidation feasible. Alternatively, high $H_2O_2$ levels can hyperoxidize peroxiredoxins leading to local building up of $H_2O_2$ that then could oxidize a signaling protein (floodgate hypothesis). In a second model, $H_2O_2$ oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.

Development of Surface Acoustic Wave Biosensor Using Epitaxial Lift-Off(ELO) Technology (ELO 기술을 이용한 표면 탄성파 바이오 센서의 개발)

  • 김기범;정우석;권대규;김남균;홍철운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.447-449
    • /
    • 2004
  • The purpose of this study is measured surface acoustic wave(SAW) characteristics to confirm utilization possibility as SAW sensor using new Pb(Mg$_{1}$3/Nb$_{2}$3/) $O_3$-PbTiO$_3$ (PMN-PT) piezoelectric substrate. We have tried to see if the material can be practically available as a new surface acoustic wave (SAW) biosensor to detect protein. The experimental results clarified that the frequency filtering of the central frequency of the PMN-PT substrate is a superior result to that of the LiTaO$_3$ (LT) substrate, but the result was not completely satisfactory. We know there is a problem in the design of inter-digital transducer (IDT) pattern. The waves transferred through the input terminal forms SAW which is sure to be transferred to the direction of the output terminal and the backward direction of the input terminal. This reflected wave is reiterated with SAW, which is transferred to the output direction, and so the frequency filtering gives a not good result. The electromechanical coupling coefficient of the PMN-PT substrate is excellent, and we can use it as a SAW sensor, in the near future, provided that there will be a new IDT design to increase the frequency filtering.

  • PDF

Performance Improvement of Glucose Sensor Adopting Enzymatic Catalyst bonded by Glutaraldehyde (글루타알데하이드에 의해 결합된 효소촉매를 이용한 글루코스 센서의 성능향상)

  • AHN, YEONJOO;CHUNG, YONGJIN;LEE, KYUBIN;KWON, YONGCHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.378-385
    • /
    • 2016
  • In this study, we synthesized a biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of glutaraldehyde (GA)(GA/[GOx/PEI/CNT])for fabrication of glucose sensor. Main bonding of the GA/[GOx/PEI/CNT] catalyst was formed by crosslinking of functional end groups between GOx/PEI and GA. Catalytic activity of GA/[GOx/PEI/CNT] was quantified by UV-Vis and electrochemical measurements. As a result of that, high immobilization ratio of 199% than other catalyst (with only physical adsorption) and large sensitivity value of $13.4{\mu}A/cm^2/mM$ was gained. With estimation of the biosensor stability, it was found that the GA/[GOx/PEI/CNT] kept about 88% of its initial activity even after three weeks. It shows GA minimized the loss of GOx and improved sensing ability and stability compared with that using other biocatalysts.

Abridged Region from Escherichia coli Periplasmic Stress Sensor DegS Acts as Plasminogen Activator In Vitro

  • Junpeng, Yan;Ko, Juho;Qi, Yipeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.594-599
    • /
    • 2007
  • It is well known that the Escherichia coli inner membrane-bound protease DegS is a periplasmic stress sensor for unfolded outer membrane proteins (OMPs). Previous studies have also shown that the outer membrane protease OmpT activates plasminogen in vitro and this may be exploited by bacteria in the course of pathogenesis. However, there has been no research on the plasminogen activation ability of the important periplasmic protein DegS. Accordingly, in this study, the whole-length and truncated degS genes were separately overexpressed in Escherichia coli, the recombinant proteins purified by affinity chromatography, and their plasminogen activator role tested in vitro. The results suggested that the whole-length DegS was able to activate plasminogen on a plasma plate. The truncated form of DegS (residues 80-345), designated ${\Delta}DegS$, also acted as a plasminogen activator, as confirmed by different assays. The serine protease property of ${\Delta}DegS$ was verified based on the complete inhibition of its enzyme activity by PMSF (phenylmethanesulfonyl fluoride). Therefore, the present results indicate that DegS is a plasminogen activator in vitro.

Enzyme Sensors Modified with Avidin/Biotin Systembased Protein Multilayers

  • Anzai, Jun-Ichi;Du, Xiao-Yan;Hoshi, Tomonori;Suzuki, Yasuhiro;Takeshita, Hiroki;Osa, Tetsuo
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.591-596
    • /
    • 1995
  • Enzyme multilayers composed of avidin and biotin-labeled enzymes were prepared on the surface of electrode, through a strong affinity between avidin and biotin (binding constant: ca $10^{15} M^{-1}$). The enzyme multilayers were useful for the improvement of the performance characteristies of enzyme sensors. The output current of the enzyme sensors depended linearly on the number of enzyme layers deposited. Thus, lactate oxidase (LOx) and alcohol oxidase (AlOx) were deposited after being modified with biotin for constructing enzyme sensors sensitive to L-lactate and ethanol respectively. It was also possible to deposit two different kinds of enzymes successively in a single multilayer. The glucose oxidase (GOx) and ascorbate oxidase (AsOx) were built into a multilayer structure on a Platinum electrode. The GOx, AsOx multilayer-modified electrode was useful for the elimination of ascorbic acid interference of the glucose sensor.

  • PDF

A Pumilio Activity Sensor Reveals Bag-of-Marbles Inhibition of Pum Activity in the Drosophila Ovary

  • Wijeong Jang;Changsoo Kim
    • Development and Reproduction
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 2023
  • Pumilio (Pum) is an RNA-binding protein and translational repressor important to diverse biological processes. In the Drosophila ovary, Pum is expressed in female germline stem cells (GSCs), wherein it acts as an intrinsic stem cell maintenance factor via repressing target mRNAs that are as yet mostly unknown. Pum recognizes the Pum binding sequence (PBS) in the mRNA 3'UTR through its C-terminus Puf domain. Translational repression is mediated through its N-terminal domain, but the molecular mechanism remains largely unknown. We previously showed that Bag-of-marbles, a critical differentiation-promoting factor of female GSCs, physically interacts with the N-terminus of Pum. We further showed that this interaction is critical to Bam inhibition of Pum repressive action in cultured cells, but the physiological relevance was not addressed. Here we design an in vivo GFP translational reporter bearing the PBS in its 3'UTR and show that GFP expression is reduced in cells wherein Pum is known to be active. Furthermore, we demonstrate in pum mutant ovary that this GFP repression requires Pum, and also that the sensor faithfully monitors Pum activity. Finally, we show that forced expression of Bam inhibits Pum-mediated repression, validating that Bam inhibits Pum activity in vivo.

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.

Interactome Analysis of Yeast Glutathione Peroxidase 3

  • Lee, Phil-Young;Bae, Kwang-Hee;Kho, Chang-Won;Kang, Sung-Hyun;Lee, Do-Hee;Cho, Sa-Yeon;Kang, Seong-Man;Lee, Sang-Chul;Park, Byoung-Chul;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1364-1367
    • /
    • 2008
  • Oxidative stress damages all cellular constituents, and therefore, cell has to possess various defense mechanisms to cope. Saccharomyces cerevisiae, widely used as a model organism for studying cellular responses to oxidative stress, contains three glutathione peroxidase (Gpx) proteins. Among them, Gpx3 plays a major defense role against oxidative stress in S. cerevisiae. In this study, in order to identity the new interaction proteins of Gpx3, we carried out two-dimensional gel electrophoresis after immunoprecipitation (IP-2DE), and MALDI-TOF mass spectrometry. The results showed that several proteins including protein disulfide isomerase, glutaredoxin 2, and SSY protein 3 specifically interact with Gpx3. These findings led us to suggest the possibility that Gpx3, known as a redox sensor and ROS scavenger, has another functional role by interacting with several proteins with various cellular functions.

Regulation of Endoplasmic Reticulum Stress Response by the Immobilization Stress (부동스트레스에 의한 소포체스트레스반응 조절)

  • Kwon, Ki-Sang;Kwon, Young-Sook;Kim, Seung-Whan;Kim, Dong-Woon;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1132-1136
    • /
    • 2012
  • Many kind of cell stresses induce gene expression of unfolded protein response (UPR)-associated factors. This study demonstrated that up- and down-regulation of gene expression of endoplasmic reticulum (ER) stress chaperones and ER stress sensors was induced by immobilization stress in the rat organs (adrenal gland, liver, lung, muscle). However, no statistically significant regulation was detected in the others (heart, spleen, thymus, kidney, testis). The results are the first to show that immobilization stress induces UPR associated gene expression, will help to explain immobilization stress-associated ER stress.