• Title/Summary/Keyword: protein microarray

Search Result 347, Processing Time 0.022 seconds

Molecular weight-associated cellular response to silk fibroin fragments demonstrated in MG63 cells

  • Jo, You-Young;Kweon, HaeYong;Kim, Seong-Gon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • In this study, changes in gene expression after administration of silk fibroin fragments ($size{\approx}30kDa$) were evaluated in MG63 cells using a cDNA microarray assay. In addition, the level of alkaline phosphatase (ALP) activity and cellular proliferation in the group administered moderately sized silk fibroin fragments ($size{\approx}30kDa$) (MSF) were compared to those in the group administered smaller silk fibroin fragments (size < 1 kDa) (SSF). The results of the cDNA microarray assay show increased expression of genes that are related to the cell cycle and inflammation. ALP, bone morphogenetic protein-7, bone morphogenetic protein receptor type IA, and runt-related transcription factor 2 exhibited significantly lower expression compared to control cells (fold ratio < 0.5). Relative ALP activity of the $100{\mu}g/mL$ MSF group was significantly lower than that of the SSF group (P < 0.05). Thus, the MSF group showed increased expression of genes associated with cellular proliferation and inflammation but decreased expression of genes associated with osteogenesis.

CD Gene Microarray Profiles of Bambusae Caulis in Liquamen in Human Mast Cell

  • Jeon Hoon;Kang Nan Joo;Kim Gyo Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.241-246
    • /
    • 2003
  • Bambusae Caulis in Liquamen(BCL) has been used to relieve the cough and asthma, and remove the phlegm in traditional Oriental medicine. In recent years, it was studied for its antiinflammatory, antiallergenic, immune-modulating, and anticarcinogenic capabilities. This experiment was performed to evaluate the microarray profiles of CD genes in human mast cells before and after BCL treatment. The results are as follows: The expression of 51 of the genes studied was up-regulated in the Bel-treated group; they include the genes coding L apoferritin, beta-2-microglobulin, ferritin light polypeptide, CD63, monocyte chemotactic and activating fact, heme oxygenase 1, CD140a, integrin alpha M, colony stimulating factor 2 receptor, eukaryotic translation elongation factor, CD37, interleukin 18, NADH dehydrogenase 1 beta, CD48, 5-lipoxygenase activating protein, interleukin 4, ribosomal protein L5, GABA(A) receptor-associated protein, beta-tubulin, integrin beta 1, CD162, CD32, lymphotoxin beta, alpha-tublin, integrin alpha L, CD2, CD151, CD331, 90 kDa heat shock protein, CD59, CD3Z, microsomal glutathione S-transferase 2, CD33, CD162R, cyclophilinA, CD84, interleukin 9 receptor, interleukin 11, CD117, CD39-Like 2, and so forth. The expression of 7 of the genes studied was down-regulated in the BCL-treated group; they include the genes coding con, CD238, SCF, CD160, CD231, CD24, and CD130. Consequently, the treatment of BCL on the human mast cells increased the expression of 51 genes and decreased the expression of 7 genes. These data would provide a fundamental basis to the traditional applications of Bambusae Caulis in Liquamen.

Genomewide Expression Profile of Forsythia Suspensa on Lipopolysaccaride-induced Activation in Microglial Cells

  • Sohn, Sung-Hwa;Ko, Eun-Jung;Kim, Yang-Seok;Shin, Min-Kyu;Hong, Moo-Chang;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • Microglia, which is the primary immune effector cells in the central nervous system, constitutes the first line of defense against infection and injury in the brain. The goal of this study was to determine the protective (anti-inflammation) mechanisms of forsythia suspense (FS) on LPS-induced activation of BV-2 microglial cells. The effects of FS on gene expression profiles in activated BV-2 microglial cells were evaluated using microarray analysis. BV-2 microglial cells were cultured in a 100mm dish $(1{\times}10^7/dish)$ for 24hr and then pretreated with $1{\mu}g/mL$ FS or left untreated for 30 min. Next, $1{\mu}g/mL$ LPS was added to the samples and the cells were reincubated at $37^{\circ}C$ for 30 min, 1hr, and 3hr. The gene expression profiles of the BV-2 microglial cells varied depending on the FS. The oligonucleotide microarray analysis revealed that MAPK pathway-related genes such as Mitogen activated protein kinase 1 (Mapk1), RAS protein activator like 2 (Rasal2), and G-protein coupled receptor 12 (Gpr12) and nitric oxide biosynthesis-related genes such as nitric oxide synthase 1 (neuronal) adaptor protein (Nos1ap), and dimethylarginine dimethylaminohydrolase 1 (Ddah1) were down regulated in FS-treated BV-2 microglial cells. FS can affect the MAPK pathway and nitric oxide biosynthesis in BV-2 microglial cells.

Differential Gene Expression in Estradiol-3-Benzoate-Treated Liver and Chemically- Induced Hepatocellular Carcinoma

  • KIM , SEYL;KANG, JIN-SEOK;JANG, DONG-DEUK;LEE, KOOK-KYUNG;KIM, SOON-AE;HAN, BEOM-SEOK;PARK, YOUNG-IN
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1286-1294
    • /
    • 2004
  • In a previous study by the current authors, hepatocellular carcinoma (HCC) was determined to be epidemiologically sex-dependent, and the incidence and multiplicity of HCC found to decrease in estradiol-3 benzoate (EB)-treated F344 rats. Therefore, to ascertain the anticancer mechanism of EB, a commercially available cDNA microarray, with a total of 14,815 cDNA rat gene clones, was used to determine the differentially expressed genes in nontreated livers, EB-treated livers, and diethynitrosolamine (DEN)-induced HCC. In the sequenced experiment, a total of 85 genes were differentially expressed at either two or more times the rate of the normal expression, where 33 genes were downregulated by EB, and 52 genes upregulated. Candidate genes were selected according to significant changes observed in the mRNA expression in the EB-treated livers compared with the nontreated livers, then these genes were filtered according to their different expression patterns in the DEN-induced tumors compared to the estrogen-treated livers. To confirm the microarray data, a real-time PCR analysis was performed for ten selected genes: the H-ras revertant protein 107 (H­rev107), insulin-like growth factor binding protein (lOFBP), parathyroid hormone receptor (PI'HR), SH3 domain binding protein (SH3BP), metallothionein, src-suppressed C-kinase substrate (SSeCK) gene, phosphodiesterase I, CD44, epithelial membrane protein 3 (EMP3), and estrogen receptor a (ERa). The SSeCK and phosphodiesterase I genes were both upregulated in the DEN-induced hepatocarcinomas, yet their possible carcinogenic functions remain unknown. Meanwhile, the other genes were downregulated, including the genes related to growth regulation (IOFBP, H-revI07, ER$\alpha$), adipogenesis inhibition (PTHR), and tumor suppression (metallothionein).

Chemokines Gene Expression of RAW 264.7 Cells by Actinobacillus actinomycetemcomitans Lipopolysaccharide Using Microarray and RT-PCR Analysis

  • Chung, Jin;Choi, Mun Jeoung;Jeong, So Yeon;Oh, Jong Suk;Kim, Hyung Keun
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.257-261
    • /
    • 2009
  • Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) is an important pathogen casuing aggressive periodontitis. The present study was designed to investigate the chemokines expression regulated by A. actinomycetemcomitans lipopolysaccharide (LPS). Chemokines genes expression profiling was performed in Raw 264.7 cells by analyses of microarray and reverse transcription-polymerase chain reaction (RT-PCR). Microarray results showed that the induction of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-$1{\alpha}$ (MIP-$1{\alpha}$), MIP-$1{\beta}$, MIP-$1{\gamma}$, regulated upon activation, normal T-cell expressed and secreted (RANTES), macrophage inflammatory protein-2 (MIP-2), and interferon-${\gamma}$ inducible protein 10 (IP 10) by A. actinomycetemcomitans LPS was increased to 12.5, 1.53, 9.09, 17.3, 2.82, 16.1, and 18.1 folds at 18 h, respectively. To check these chemokines expression by A. actinomycetemcomitans LPS, we examined gene expressions by RT-PCR, and found that the expression of MIP-$1{\beta}$, MIP-$1{\gamma}$, RANTES, MIP-2, and IP 10 was increased 107.1, 93.6, 106.8, 86.5, and 162.0 folds at 18 h, respectively. These results indicate that A. actinomycetemcomitans LPS stimulates the several chemokines expressions (MIP-$1{\alpha}$, MIP-$1{\beta}$, MIP-$1{\gamma}$, RANTES, MIP-2, and IP 10) in Raw 264.7 cells.

Integrated Model Design of Microarray Data Using miRNA, PPI, Disease Information (miRNA, PPI, 질병 정보를 이용한 마이크로어레이 데이터 통합 모델 설계)

  • Ha, Kyung-Sik;Lim, Jin-Muk;Kim, Hong-Gee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.786-792
    • /
    • 2012
  • A microarray is a collection of thousands of DNAs or RNAs arranged on a substrate, and it enables one to navigate large amounts of gene expression. However, a researcher uses his designed experimental methods to focus on particular phenotypes from the available mass of data. In this paper, we used MicroRNAs(miRNAs) and Protein-Protein Interation(PPI) databases to enhance and expand meanings in microarray data. Further, the expanded data are linked with the Online Mendelian Inheritance in Man(OMIM), and International Statistical Classification of Diseases and Related Health Problems, $10^{th}$ Revision(ICD-10), in order to extract common genetic relationships between diseases. This approach, we expect, should provide new biological views.

Overexpression of cysteine protease in transgenic Brassica rapa enhances resistance to bacterial soft rot and up-regulate the expression of various stress-regulated genes

  • Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.327-336
    • /
    • 2010
  • Cysteine proteases have been known as a critical factor in plant defense mechanisms in pineapple, papaya, or wild fig. Papain or ficin is one kind of cysteine proteases that shows toxic effects to herbivorous insects and pathogenic bacteria. However, resistance to bacterial soft rot of plants genetically engineered with cysteine protease has been little examined thus far. We cloned a cysteine protease cDNA from Ananas comosus and introduced the gene into Chinese cabbage (Brassica rapa) under the control of the cauliflower mosaic virus 35S promoter. The transgene was stably integrated and actively transcribed in transgenic plants. In comparisons with wild-type plants, the $T_2$ and $T_3$ transgenic plants exhibited a significant increase in endo-protease activity in leaves and enhanced resistance to bacterial soft rot. A cDNA microarray analysis revealed that several genes were more abundantly transcribed in the transgenic than in the wild type. These genes encode a glyoxal oxidase, PR-1 protein, PDF1, protein kinase, LTP protein, UBA protein and protease inhibitor. These results suggest an important role for cysteine protease as a signaling regulator in biotic stress signaling pathways, leading to the build-up of defense mechanism to pathogenic bacteria in plants.

High-concentration Epigallocatechin Gallate Treatment Causes Endoplasmic Reticulum Stress-mediated Cell Death in HepG2 Cells

  • Ahn, Joon-Ik;Jeong, Kyoung-Ji;Ko, Moon-Jeong;Shin, Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • Epigallocatechin gallate (EGCG), a well-known antioxidant molecule, has been reported to cause hepatotoxicity when used in excess. However, the mechanism underlying EGCG-induced hepatotoxicity is still unclear. To better understand the mode of action of EGCG-induced hepatotoxicity, we examined the effect of EGCG on human hepatic gene expression in HepG2 cells using microarrays. Analyses of microarray data revealed more than 1300 differentially expressed genes with a variety of biological processes. Upregulated genes showed a primary involvement with protein-related biological processes, such as protein synthesis, protein modification, and protein trafficking, while downregulated genes demonstrated a strong association with lipid transport. Genes involved in cellular stress responses were highly upregulated by EGCG treatment, in particular genes involved in endoplasmic reticulum (ER) stress, such as GADD153, GADD34, and ATF3. In addition, changes in genes responsible for cholesterol synthesis and lipid transport were also observed, which explains the high accumulation of EGCG-induced lipids. We also identified other regulatory genes that might aid in clarifying the molecular mechanism underlying EGCG-induced hepatotoxicity.

Identification of Radiation-Sensitive Gene in U937 Cell by using cDNA-Chip Composed of Human Cancer Related Gene (U937 세포에서 발암관련 유전자들로 구성된 DNA chip을 이용한 방사선 감수성 유전자들의 선발)

  • 김종수;김인규;강경선;윤병수
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • We have used cDNA microarray hybridization to identify gene regulated in response to gamma-irradiation in U-937 cell. The cDNA-chip was composed entirely of 1,000 human cancer related gene including apoptosis and angiogenesis etc. In gamma-irradiated U-937 cell, highly charged protein, ribosomal protein L32, four and a half LIM domains 3, lipocalin 2 (oncogene 24p3) and interleukin 15, ataxia telangiectasia mutated (includes complementation groups A, C and D) genes showed increased level of its transcription, and cell division cycle 25A, dihydrofolate reductase, topoisomerase (DNA) II beta(180kD), kinase suppressor of ras and strarigin genes showed reduced level of its transcription compared to untreated U-937 cell. The significant change of level of transcription was not found in well-known ionizing radiation(IR)-responsive gene, such as transcription factor TP53 and p53 related gene, except ataxia telangiectasia mutated gene.

  • PDF

Microarray Analysis of Differentially Expressed Genes in the Brains of Tubby Mice

  • Lee, Jeong-Ho;Kim, Chul-Hoon;Kim, Dong-Goo;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.91-97
    • /
    • 2009
  • The tubby mouse is characterized by progressive retinal and cochlear degeneration and late-onset obesity. These phenotypes are caused by a loss-of-function mutation in the tub gene and are shared with several human syndromes, suggesting the importance of tubby protein in central nervous system (CNS) functioning. Although evidence suggests that tubby may act as a transcription factor mediating G-protein coupled receptor (GPCR) signaling, any downstream gene regulated by tubby has yet to be identified. To explore potential target genes of tubby with region-specific transcription patterns in the brain, we performed a microarray analysis using the cerebral cortex and hypothalamus of tubby mice. We also validated the changes of gene expression level observed with the microarray analysis using real-time RT-PCR. We found that expression of erythroid differentiation factor 1 (Erdrl) and caspase 1 (Casp1) increased, while p21-activated kinase 1 (Pak1) and cholecystokinin 2 receptor (Cck2r) expression decreased in the cerebral cortex of tubby mice. In the hypothalamic region, Casp 1 was up-regulated and $\mu$-crystallin (CRYM) was down-regulated. Based on the reported functions of the differentially expressed genes, these individual or grouped genes may account for the phenotype of tubby mice. We discussed how altered expression of genes in tubby mice might be understood as the underlying mechanism behind tubby phenotypes.