• Title/Summary/Keyword: protein microarray

Search Result 347, Processing Time 0.029 seconds

Gene Expression Profiling of the Rewarding Effect Caused by Methamphetamine in the Mesolimbic Dopamine System

  • Yang, Moon Hee;Jung, Min-Suk;Lee, Min Joo;Yoo, Kyung Hyun;Yook, Yeon Joo;Park, Eun Young;Choi, Seo Hee;Suh, Young Ju;Kim, Kee-Won;Park, Jong Hoon
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.121-130
    • /
    • 2008
  • Methamphetamine, a commonly used addictive drug, is a powerful addictive stimulant that dramatically affects the CNS. Repeated METH administration leads to a rewarding effect in a state of addiction that includes sensitization, dependence, and other phenomena. It is well known that susceptibility to the development of addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. These behavioral abnormalities reflect neuroadaptive changes in signal transduction function and cellular gene expression produced by repeated drug exposure. To provide a better understanding of addiction and the mechanism of the rewarding effect, it is important to identify related genes. In the present study, we performed gene expression profiling using microarray analysis in a reward effect animal model. We also investigated gene expression in four important regions of the brain, the nucleus accumbens, striatum, hippocampus, and cingulated cortex, and analyzed the data by two clustering methods. Genes related to signaling pathways including G-protein-coupled receptor-related pathways predominated among the identified genes. The genes identified in our study may contribute to the development of a gene modeling network for methamphetamine addiction.

Molecular Prognostic Profile of Egyptian HCC Cases Infected with Hepatitis C Virus

  • Zekri, Abdel-Rahman N.;Hassan, Zeinab K.;Bahnassy, Abeer A.;Sherif, Ghada M.;ELdahshan, Dina;Abouelhoda, Mohamed;Ali, Ahmed;Hafez, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5433-5438
    • /
    • 2012
  • Background: Hepatocellular carcinoma (HCC) is a common and aggressive malignancy. Despite of the improvements in its treatment, HCC prognosis remains poor due to its recurrence after resection. This study provides complete genetic profile for Egyptian HCC. Genome-wide analyses were performed to identify the predictive signatures. Patients and Methods: Liver tissue was collected from 31 patients with diagnosis of HCC and gene expression levels in the tumours and their adjacent non-neoplastic tissues samples were studied by analyzing changes by microarray then correlate these with the clinico-pathological parameters. Genes were validated in an independent set by qPCR. The genomic profile was associated with genetic disorders and cancer focused on gene expression, cell cycle and cell death. Molecular profile analysis revealed cell cycle progression and arrest at G2/M, but progression to mitosis; unregulated DNA damage check-points, and apoptosis. Result: Nine hundred fifty eight transcripts out of the 25,000 studied cDNAs were differentially expressed; 503 were up-regulated and 455 were down-regulated. A total of 19 pathways were up-regulated through 27 genes and 13 pathways were down-regulated through 19 genes. Thirty-seven genes showed significant differences in their expression between HCC cases with high and low Alpha Feto Protein ($AFP{\geq}600$ IU/ml). The validation for the microarray was done by real time PCR assay in which PPP3CA, ATG-5, BACE genes showed down-regulation and ABCG2, RXRA, ELOVL2, CXR3 genes showed up-regulation. cDNA microarrays showed that among the major upregulated genes in HCC are sets. Conclusion: The identified genes could provide a panel of new diagnostic and prognostic aids for HCC.

Genes Associated with Individual Variation of Electroacupuncture Anti-allodynic Effects in Rat

  • Hwang, Byung-Gil;Kim, Sun-Kwang;Han, Jae-Bok;Bae, Hyun-Su;Min, Byung-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1285-1290
    • /
    • 2007
  • The present study aims to identify and characterize genes that cause differen genes between non-responders and responders to electroacupuncture (EA) on mechanical allodynia following peripheral nerve injury. Under sodium pentobarbital anesthesia, animals were subjected to unilateral transection of the superior caudal trunk at the level between S1 and S2 spinal nerves. EA stimulation (2Hz, 0.3 ms, 0.2-0.3 mA) was delivered to Zusanli (ST36) for 30 min 2 weeks after the surgery. The degree of mechanical allodynia was assessed quantitatively by touching the tail with von Frey hair (2.0 g) at 10 min intervals. The rats, which showed an EA-induced decrease of response frequencies under 10 %, were classified as non-responders and those displaying an EA-induced decrease of response frequencies 20 % or more were classified as responders. Results from oligonucleotide microarray, to which cDNAs from the spinal dorsal horn (DH) were applied, showed that hemoglobin beta chain complex and chondroitin sulfate proteoglycan-5 decreased and limbic system-associated membrane protein increased in the non-responder group, whereas calcium-independent alpha-Iatrotoxin receptor homolog-3 increased in the responder group. These results suggest that The functional abnormality of molecules regulating cell adhesion, intracellular signal transduction and cell differentiation in the spinal DH may be involved in the anti-allodynic effect of EA.

Copper, Zinc-Superoxide Dismutase (Cu/Zn SOD) Gene During Embryogenesis of Bombyx mori: Molecular Cloning, Characterization and Expression

  • Hong, Sun-Mee;Kang, Seok-Woo;Goo, Tae-Won;Kim, Nam-Soon;Lee, Jin-Sung;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • BmCu/Zn SOD was isolated from early embryo of Bombyx mori using microarray analysis. The BmCu/Zn SOD gene was observed during the early embryonic stage with the strongest signal found at the unfertilizaion, fertilization and blastoderm stages. The BmCu/Zn SOD gene encodes a protein of 154 amino acids with a calculated Mr of 15 kDa. The deduced amino acid sequence of BmCu/Zn SOD indicated that the residues that form on the Cu/Zn binding site are conserved and that the sequence is a 60% identity to that of M. domestica. In a phylogenetic tree, Bm SOD was also close to Drosophila SODs rather than other insect SODs. The BmCu/Zn SOD gene exists as a single copy in the genome. Transcripts of BmCu/Zn SOD cDNA were identified by northern blot analysis. The expression of the BmCu/Zn SOD gene was observed weakly in most of larvae, pre-pupae, pupae and adult tissues. Also, the BmCu/Zn SOD gene was observed in early embryonic stage. Although the roles of SODs remains to be further elucidated, the high expression of BmCu/Zn SOD gene at before 24 h post fertilization suggests that this gene is of general importance during early embryogenesis in the Bombyx mod.

Cell Cycle Modulation of MCF-7 and MDA-MB-231 by a Sub-Fraction of Strobilanthes crispus and its Combination with Tamoxifen

  • Yaacob, Nik Soriani;Kamal, Nik Nursyazni Nik Mohamed;Wong, Kah Keng;Norazmi, Mohd Nor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8135-8140
    • /
    • 2016
  • Background: Cell cycle regulatory proteins are suitable targets for cancer therapeutic development since genetic alterations in many cancers also affect the functions of these molecules. Strobilanthes crispus (S. crispus) is traditionally known for its potential benefits in treating various ailments. We recently reported that an active sub-fraction of S. crispus leaves (SCS) caused caspase-dependent apoptosis of human breast cancer MCF-7 and MDA-MB-231 cells. Materials and Methods: Considering the ability of SCS to also promote the activity of the antiestrogen, tamoxifen, we further examined the effect of SCS in modulating cell cycle progression and related proteins in MCF-7 and MDA-MB-231 cells alone and in combination with tamoxifen. Expression of cell cycle-related transcripts was analysed based on a previous microarray dataset. Results: SCS significantly caused G1 arrest of both types of cells, similar to tamoxifen and this was associated with modulation of cyclin D1, p21 and p53. In combination with tamoxifen, the anticancer effects involved downregulation of $ER{\alpha}$ protein in MCF-7 cells but appeared independent of an ER-mediated mechanism in MDA-MB-231 cells. Microarray data analysis confirmed the clinical relevance of the proteins studied. Conclusions: The current data suggest that SCS growth inhibitory effects are similar to that of the antiestrogen, tamoxifen, further supporting the previously demonstrated cytotoxic and apoptotic actions of both agents.

Expression of HERC4 in Lung Cancer and its Correlation with Clinicopathological Parameters

  • Zeng, Wen-Li;Chen, Yao-Wu;Zhou, Hui;Zhou, Jue-Yu;Wei, Min;Shi, Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.513-517
    • /
    • 2015
  • Background: Growing evidence suggests that the members of the ubiquitin-proteasome system (UPS) are important for tumorigenesis. HERC4, one component, is a recently identified ubiqutin ligase. However, the expression level and function role of HERC4 in lung cancer remain unknown. Our objective was to investigate any correlation between HERC4 and development of lung cancer and its clinical significance. Materials and Methods: To determine HERC4 expression in lung cancer, an immunohistochemistry analysis of a tissue microarray containing samples of 10 lung normal tissues, 15 pulmonary neuroendocrine carcinomas, 45 squamous epithelial cancers and 50 adenocarcinomas was conducted. Receiver operating characteristic (ROC) curve analysis was applied to obtain a cut-off point of 52.5%, above which the expression of HERC4 was regarded as "positive". Results: On the basis of ROC curve analysis, positive expression of HERC4 was detected in 0/10 (0.0%) of lung normal tissues, in 4/15 (26.7%) of pulmonary neuroendocrine carcinomas, in 13/45 (28.9%) of squamous epithelial cancers and in 19/50 (38.0%) of adenocarcinomas. It showed that lung tumors expressed more HERC4 protein than adjacent normal tissues (${\chi}^2$=4.675, p=0.031). Furthermore, HERC4 positive expression had positive correlation with pT status (${\chi}^2$=44.894, p=0.000), pN status (${\chi}^2$=43.628, p=0.000), histological grade (${\chi}^2$=7.083, p=0.029) and clinical stage (${\chi}^2$=72.484, p=0.000), but not age (${\chi}^2$=0.910, p=0.340). Conclusions: Our analysis suggested that HERC4 is likely to be a diagnostic biomarker for lung cancer.

Identification of ANXA1 as a Lymphatic Metastasis and Poor Prognostic Factor in Pancreatic Ductal Adenocarcinoma

  • Liu, Qing-Hua;Shi, Mei-Lin;Bai, Jin;Zheng, Jun-Nian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2719-2724
    • /
    • 2015
  • Objective: The aim of this study was to investigate the clinical significance of annexin a1 (ANXA1) and provide molecular evidence to support that decreased ANXA1 expression could enhance cancer migration and invasion in pancreatic ductal adenocarcinoma (PDAC). Materials and Methods: Immunohistochemistry of a tissue microarray with 162 surgically resected PDAC specimens was performed to examine the expression of ANXA1. We also investigated the relationship between ANXA1 expression and clinicopathological factors and prognosis of PDAC patients. We further studied the role of ANXA1 in PDAC cell proliferation, migration and invasion by cell proliferation assay, migration assay and matrigel invasion assay with reduced ANXA1 expression by RNAi. Western blotting was used to detect matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) expression. We also detected MMP-9 enzyme activity by gelatin zymography. Results: Decreased expression of ANXA1 was significantly associated with poor differentiation, lymph node metastasis and advanced TNM stage of PDAC patients (p<0.05). Moreover, decreased expression of ANXA1 was correlated with poor survival (p<0.05). Furthermore, we found that ANXA1 knockdown inhibited cell proliferation, induced G1 phase cell cycle arrest, increased PDAC cell migration and invasion capacity compared with controls. In addition, Western blotting showed that ANXA1 knockdown increased the MMP-9 protein level and decreased TIMP-1 expression. Gelatin zymography showed that MMP-9 enzyme activity was also elevated. Conclusions: Negative ANXA1 expression is a most unfavorable prognostic factor for PDAC patients. ANXA1 knockdown inhibits cell proliferation by inducing G1 phase cell cycle arrest and increases migration and invasion of PDAC cells through up-regulating MMP-9 expression and activity, implying that ANXA1 may serve as a promising prognostic biomarker and therapeutic target for PDAC.

Differentially Expressed Genes by Inhibition of C-terminal Src Kinase by siRNA in Human Vascular Smooth Muscle Cells and Their Association with Blood Pressure

  • Hong, Kyung-Won;Shin, Young-Bin;Kim, Koan-Hoi;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.102-113
    • /
    • 2011
  • C-terminal SRC kinase (CSK) is a ubiquitously expressed, cytosolic enzyme that phosphorylates and inactivates several SRC family protein tyrosine kinases. Recent genomewide association studies have implicated CSK in the regulation of blood pressure. The current study aim is to determine the blood pressure association of the genes regulated by CSK down-regulation. The CSK mRNA expression was downregulated in vascular smooth muscle cells using small interfering RNA (siRNA). CSK mRNA levels fell by 90% in cells that were treated with CSK siRNA; the RNA from these cells was examined by microarray using the Illumina HumanRef-8 v3 platform, which comprises 24,526 reference mRNA probes. On treatment with CSK siRNA, 19 genes were downregulated by more than 2-fold and 13 genes were upregulated by more than 2-fold. Three (CANX, SLC30A7, and HMOX1) of them revealed more than 3 fold differential expression. Interestingly, the HMOX1 SNPs were associated with diastolic blood pressure in the 7551 Koreans using Korea Association REsource data, and the result was supported by the other reports that HMOX1 linked to blood vessel maintenance. Among the remaining 29 differentially expressed genes, seven (SSBP1, CDH2, YWHAE, ME2, PFTK1, G3BP2, and TUFT1) revealed association with both systolic and diastolic blood pressures. The CDH2 gene was linked to blood pressures. Conclusively, we identified 32 differentially expressed genes which were regulated by CSK reduction, and two (HOMX1 and CDH2) of them might influence the blood pressure regulation through CSK pathway.

Screening of Specific Genes Expressed in the Swine Tissues and Development of a Functional cDNA Chip

  • Kim, Chul Wook;Chang, Kyu Tae;Hong, Yeon Hee;Kwon, Eun Jung;Jung, Won Yong;Cho, Kwang Keun;Chung, Ki Hwa;Kim, Byeong Woo;Lee, Jung Gyu;Yeo, Jung-Sou;Kang, Yang Su;Joo, Young Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.933-941
    • /
    • 2005
  • To develop a functional cDNA chip, specific genes expressed in the tissues of swine Kagoshima Berkshire were screened. A total of 4,434 ESTs were obtained by constructing a cDNA library from total RNA isolated from the muscle and fat tissues, affirming their functions by investigating similarity of nucleotide sequences with the database at the NCBI. Among them, 1,230 ESTs were confirmed as novel genes, which, to date, have not been identified. Attaching the genes to a cDNA microarray slide revealed expression patterns of genes in muscle and fat according to the growth stages of swine. As specific genes expressed in the muscle tissues of swine with body weight of 30 kg, 60 genes including actin, myosin, tropomysin, transfer RNA-trp synthetase, Kel-like protein 23, KIAA0182 and COI, Foocen-m, etc were obtained. In addition, 18 novel genes were obtained. As specific genes expressed in fat tissues of swine with body weight of 30 kg, 47 genes including annexin II, Collagen, Fibronectin, Pleckstrin homology domain, serine protease, etc were obtained. 21 novel genes were also obtained. The genes specifically expressed in the muscle and fat tissues of swine affect contraction and relaxation of the muscle and the fat. However, studies on the expression mechanisms of the genes are insufficient. To reveal species of structural genes in swine muscle and fat tissue, interrelation studies in expression and function of genes by using the cDNA chip should be conducted.

Differential Gene Expression after treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin in Hairless Mice Skin

  • Kang, Mi-Kyung;Kang, Ho-Il;Ryeom, Tai-Kyung;Eom, Mi-Ok;Park, Mi-Sun;Jee, Seung-Wan;Kim, Ok-Hee
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.172-172
    • /
    • 2003
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a prototype of many halogenated aromatic hydrocarbons, is a ubiquitous, persistent environmental contaminant and displays high toxicity in animals and has been implicated in human carcinogenesis. Although the mechanism of carcinogenesis by TCDD is unclear, it is considered to be a non-genotoxic and tumor promoter. In this study, we investigated the tumor promotion effect of TCDD on the two-stage skin chemical carcinogenesis using hairless mouse (SKH1). We induced papillomas after treatment with N-methyl -N'-nitro-N-nitorsoguanidine (MNNG) as a initiator and TCDD as a promoter for 30 weeks. We found that the incidence or multiplicity of papillomas and hyperplastic nodules was maximally induced at MNNG-TCDD group compare to control, MNNG, and TCDD alone. These results suggesting that TCDD can acts as a potent promoter in the hairless mouse skin. In addition, we used cDNA microarray to detect the differential gene expression in normal, tumor surrounding, and tumor regions induced in hairless mouse skin by MNNG plus TCDD protocol. We found that 49 and 42 genes out of 5,592 genes associated with protein synthesis, cell organization, lipid transport and oxidative stress in tumor and surrounding regions were up- or down- regulated two fold or more, respectively. We are currently investigating how these genes play a role in TCDD-mediated chemical carcinogenesis.

  • PDF