Genes Associated with Individual Variation of Electroacupuncture Anti-allodynic Effects in Rat

  • Hwang, Byung-Gil (Department of East-West Medicine, Graduate School) ;
  • Kim, Sun-Kwang (Department of Physiology, College of Oriental Medicine) ;
  • Han, Jae-Bok (Department of East-West Medicine, Graduate School) ;
  • Bae, Hyun-Su (Department of Physiology, College of Oriental Medicine) ;
  • Min, Byung-Il (Department of Physiology, College of Medicine, Kyung-Hee University)
  • Published : 2007.10.25

Abstract

The present study aims to identify and characterize genes that cause differen genes between non-responders and responders to electroacupuncture (EA) on mechanical allodynia following peripheral nerve injury. Under sodium pentobarbital anesthesia, animals were subjected to unilateral transection of the superior caudal trunk at the level between S1 and S2 spinal nerves. EA stimulation (2Hz, 0.3 ms, 0.2-0.3 mA) was delivered to Zusanli (ST36) for 30 min 2 weeks after the surgery. The degree of mechanical allodynia was assessed quantitatively by touching the tail with von Frey hair (2.0 g) at 10 min intervals. The rats, which showed an EA-induced decrease of response frequencies under 10 %, were classified as non-responders and those displaying an EA-induced decrease of response frequencies 20 % or more were classified as responders. Results from oligonucleotide microarray, to which cDNAs from the spinal dorsal horn (DH) were applied, showed that hemoglobin beta chain complex and chondroitin sulfate proteoglycan-5 decreased and limbic system-associated membrane protein increased in the non-responder group, whereas calcium-independent alpha-Iatrotoxin receptor homolog-3 increased in the responder group. These results suggest that The functional abnormality of molecules regulating cell adhesion, intracellular signal transduction and cell differentiation in the spinal DH may be involved in the anti-allodynic effect of EA.

Keywords

References

  1. Kaptchuk, T.J. Acupuncture: theory, efficacy, and practice. Ann. Intern. Med. 136(5):374-383, 2002 https://doi.org/10.7326/0003-4819-136-5-200203050-00010
  2. Han, J.S. Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci. 26(1):17-22, 2003 https://doi.org/10.1016/S0166-2236(02)00006-1
  3. Lee, G., Rho, S., Shin, M., Hong, M., Min, B., Bae, H. The association of cholecystokinin-A receptor expression with the responsiveness of electroacupuncture analgesic effects in rat. Neurosci. Lett. 325(1):17-20, 2002 https://doi.org/10.1016/S0304-3940(02)00214-8
  4. Takeshige, C., Murai, M., Sato, T., Hishida, F. Parallel individual variations in effectiveness of acupuncture, morphine analgesia, and dorsal PAG-SPA and their abolition by D-phenylalanine. Acupunct. Electro-Ther. Res. 5: 251-268, 1993
  5. Tang, N.M., Dong, H.W., Wang, X.M., Tsui, Z.C., Han, J.S. Cholecystokinin antisense RNA increases the analgesic effect induced by electroacupuncture or low dose morphine: conversion of low responder rats into high responders. Pain. 71(1):71-80, 1997 https://doi.org/10.1016/S0304-3959(97)03341-1
  6. Lee, G.S., Han, J.B., Shin, M.K., Hong, M.C., Kim, S.W., Min, B.I., Bae, H. Enhancement of electroacupuncture-induced analgesic effect in cholecystokinin-A receptor deficient rats. Brain Res. Bull. 62(2):161-164, 2003 https://doi.org/10.1016/j.brainresbull.2003.09.007
  7. Lee, G., Rho, S., Lee, J., Min, B., Shin, M., Hong, M., Bae, H. Cloning of genes responsible for distinguishing between the responder and non-responder to the acupuncture mediated analgesic effects. Experimental Biology 2001, Abstract 4932, 2001
  8. Bonica, J.J. Causalgia and other reflex sympathetic dystrophies, In: J.J. Bonica, The Management of Pain, Vol. 2, Philadelphia : Lea and Febiger, pp 220-243, 1990
  9. Hwang, B.G., Min, B.I., Kim, J.H., Na, H.S., Park, D.S. Effects of electroacupuncture on the mechanical allodynia in the rat model of neuropathic pain. Neurosci. Lett. 320(1-2):49-52, 2002 https://doi.org/10.1016/S0304-3940(02)00027-7
  10. Kim, J.H., Min, B.I., Na, H.S., Park, D.S. Relieving effects of electroacupuncture on mechanical allodynia in neuropathic pain model of inferior caudal trunk injury in rat: mediation by spinal opioid receptors. Brain Res. 998(2):230-236, 2004 https://doi.org/10.1016/j.brainres.2003.11.045
  11. Huang, C., Li, H.T., Shi, Y.S., Han, J.S., Wan, Y. Ketamine potentiates the effect of electroacupuncture on mechanical allodynia in a rat model of neuropathic pain. Neurosci. Lett. 368(3):327-331, 2004 https://doi.org/10.1016/j.neulet.2004.07.073
  12. Dai, Y., Kondo, E., Fukuoka, T., Tokunaga, A., Miki, K., Noguchi, K. The effect of electroacupuncture on pain behaviors and noxious stimulus-evoked Fos expression in a rat model of neuropathic pain. J. Pain. 2(3):151-159, 2001 https://doi.org/10.1054/jpai.2001.19964
  13. Ko, J., Na, D.S., Lee, Y.H., Shin, S.Y., Kim, J.H., Hwang, B.G., Min, B.I., Park, D.S. cDNA microarray analysis of the differential gene expression in the neuropathic pain and electroacupuncture treatment models. J. Biochem. Mol. Biol. 35(4):420-427, 2002 https://doi.org/10.5483/BMBRep.2002.35.4.420
  14. Sung, H.J., Kim, Y.S., Kim, I.S., Jang, S.W., Kim, Y.R., Na, D.S., Han, K.H., Hwang, B.G., Park, D.S., Ko, J. Proteomic analysis of differential protein expression in neuropathic pain and electroacupuncture treatment models. Proteomics. 4(9):2805-2813, 2004 https://doi.org/10.1002/pmic.200300821
  15. Na, H.S., Han, J.S., Ko, K.H., Hong, S.K. A behavioral model for peripheral neuropathy produced in rat's tail by inferior caudal trunk injury. Neurosci. Lett. 177(1-2):50-52, 1994 https://doi.org/10.1016/0304-3940(94)90042-6
  16. Ohyagi, Y., Yamada, T., Goto, I. Hemoglobin as a novel protein developmentally regulated in neurons. Brain Res. 635(1-2):323-327, 1994 https://doi.org/10.1016/0006-8993(94)91455-9
  17. Liu, L., Zeng, M., Stamler, J.S. Hemoglobin induction in mouse macrophages. Proc. Natl. Acad. Sci. USA. 96(12): 6643-6647, 1999
  18. Chiba, T., Li, Y.H., Yamane, T., Ogikubo, O., Fukuoka, M., Arai, R., Takahashi, S., Ohtsuka, T., Ohkubo, I., Matsui, N. Inhibition of recombinant dipeptidyl peptidase III by synthetic hemorphin-like peptides. Peptides. 24(5):773-778, 2003 https://doi.org/10.1016/S0196-9781(03)00119-0
  19. Lew, R.A., Mustafa, T., Ye, S., McDowall, S.G., Chai, S.Y., Albiston, A.L. Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J. Neurochem. 86(2):344-350, 2003
  20. Nyberg, F., Sanderson, K., Glamsta, E.L. The hemorphins: a new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers. 43(2):147-156, 1997 https://doi.org/10.1002/(SICI)1097-0282(1997)43:2<147::AID-BIP8>3.0.CO;2-V
  21. Nishimura, K., Hazato, T. Protein isolation and identification of an endogenous inhibitor of enkephalin-degrading enzymes from bovine spinal cord. Biochem. Biophys. Res. Commun. 194(2):713-719, 1993 https://doi.org/10.1006/bbrc.1993.1880
  22. Ueda, H., Matsunaga, S., Inoue, M., Yamamoto, Y., Hazato, T. Complete inhibition of purinoceptor agonist-induced nociception by spinorphin, but not by morphine. Peptides. 21(8):1215-1221, 2000 https://doi.org/10.1016/S0196-9781(00)00262-X
  23. Honda, M., Okutsu, H., Matsuura, T., Miyagi, T., Yamamoto, Y., Hazato, T., Ono, H. Spinorphin, an endogenous inhibitor of enkephalin-degrading enzymes, potentiates leu-enkephalin-induced anti-allodynic and antinociceptive effects in mice. Jpn. J. Pharmacol. 87(4):261-267, 2001 https://doi.org/10.1254/jjp.87.261
  24. Watanabe, E., Maeda, N., Matsui, F., Kushima, Y., Noda, M. Oohira A. Neuroglycan C, a novel membrane-spanning chondroitin sulfate proteoglycan that is restricted to the brain. J. Biol. Chem. 270(45):26876-26882, 1995 https://doi.org/10.1074/jbc.270.45.26876
  25. Oohira, A., Shuo, T., Tokita, Y., Nakanishi, K., Aono, S. Neuroglycan C, a brain-specific part-time proteoglycan, with a particular multidomain structure. Glycoconj. J. 21(1-2):53-57, 2004 https://doi.org/10.1023/B:GLYC.0000043748.90896.83
  26. Pimenta, A.F., Zhukareva, V., Barbe, M.F., Reinoso, B.S., Grimley, C., Henzel, W., Fischer, I., Levitt, P. The limbic system-associated membrane protein is an Ig superfamily member that mediates selective neuronal growth and axon targeting. Neuron. 15(2):287-297, 1995 https://doi.org/10.1016/0896-6273(95)90034-9
  27. Levitt, P. A monoclonal antibody to limbic system neurons. Science. 223(4633):299-301, 1984 https://doi.org/10.1126/science.6199842
  28. Zhang, B., Levitt, P., Murray, M. Induction of presynaptic reexpression of an adhesion protein in lamina II after dorsal root deafferentation in adult rat spinal cord. Exp Neurol. 149(2):468-72, 1998 https://doi.org/10.1006/exnr.1997.6722
  29. Rosenthal, L., Meldolesi, J. ${\alpha}$-Latrotoxin and related toxins. Pharmacol Ther. 42(1):115-134, 1989 https://doi.org/10.1016/0163-7258(89)90024-7
  30. Krasnoperov, V.G., Bittner, M.A., Beavis, R., Kuang, Y., Salnikow, K.V., Chepurny, O.G., Little, A.R., Plotnikov, A.N., Wu, D., Holz, R.W., Petrenko, A.G. Alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron. 18(6):925-937, 1997 https://doi.org/10.1016/S0896-6273(00)80332-3
  31. Lelianova, V.G., Davletov, B.A., Sterling, A., Rahman, M.A., Grishin, E.V., Totty, N.F., Ushkaryov, Y.A. ${\alpha}$-Latrotoxin Receptor, Latrophilin, Is a Novel Member of the Secretin Family of G Protein-coupled Receptors. J. Biol. Chem. 272(34):21504-21508, 1997 https://doi.org/10.1074/jbc.272.34.21504
  32. Ichtchenko, K., Bittner, M.A., Krasnoperov, V., Little, A.R., Chepurny, O., Holz, R.W., Petrenko, A.G. A Novel Ubiquitously Expressed ${\alpha}$-Latrotoxin Receptor Is a Member of the CIRL Family of G-protein-coupled Receptors, J. Biol. Chem. 274(9):5491-5498, 1999 https://doi.org/10.1074/jbc.274.9.5491